Jordan curve theorem in the context of "Jordan curve"

Play Trivia Questions online!

or

Skip to study material about Jordan curve theorem in the context of "Jordan curve"

Ad spacer

⭐ Core Definition: Jordan curve theorem

In topology, the Jordan curve theorem (JCT), formulated by Camille Jordan in 1887, asserts that every Jordan curve (a plane simple closed curve) divides the plane into two regions: the interior, bounded by the curve, and an unbounded exterior, containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere.

While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (Tverberg (1980, Introduction)). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Jordan curve theorem in the context of Brouwer fixed-point theorem

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a nonempty compact convex set to itself, there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a nonempty convex compact subset of Euclidean space to itself.

Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics. In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem, the invariance of dimension and the Borsuk–Ulam theorem. This gives it a place among the fundamental theorems of topology. The theorem is also used for proving deep results about differential equations and is covered in most introductory courses on differential geometry. It appears in unlikely fields such as game theory. In economics, Brouwer's fixed-point theorem and its extension, the Kakutani fixed-point theorem, play a central role in the proof of existence of general equilibrium in market economies as developed in the 1950s by economics Nobel prize winners Kenneth Arrow and Gérard Debreu.

↑ Return to Menu