Joint Institute for Nuclear Research in the context of "Nihonium"

Play Trivia Questions online!

or

Skip to study material about Joint Institute for Nuclear Research in the context of "Nihonium"




⭐ Core Definition: Joint Institute for Nuclear Research

The Joint Institute for Nuclear Research (JINR, Russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research center for nuclear sciences, with 5,500 staff members including 1,200 researchers holding over 1,000 Ph.D.s from eighteen countries. Most scientists are scientists of the Russian Federation.

The institute has seven laboratories, each with its own specialisation: theoretical physics, high energy physics (particle physics), heavy ion physics, condensed matter physics, nuclear reactions, neutron physics, and information technology. The institute has a division to study radiation and radiobiological research and other ad hoc experimental physics experiments.

↓ Menu

👉 Joint Institute for Nuclear Research in the context of Nihonium

Nihonium is a synthetic chemical element; it has symbol Nh and atomic number 113. It is extremely radioactive: its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13.

Nihonium was first reported to have been created in experiments carried out between 14 July and 10 August 2003, by a Russian–American collaboration at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, working in collaboration with the Lawrence Livermore National Laboratory in Livermore, California, and on 23 July 2004, by a team of Japanese scientists at Riken in Wakō, Japan. The confirmation of their claims in the ensuing years involved independent teams of scientists working in the United States, Germany, Sweden, and China, as well as the original claimants in Russia and Japan. In 2015, the IUPAC/IUPAP Joint Working Party recognised the element and assigned the priority of the discovery and naming rights for the element to Riken. The Riken team suggested the name nihonium in 2016, which was approved in the same year. The name comes from the common Japanese name for Japan (日本, Nihon).

↓ Explore More Topics
In this Dossier

Joint Institute for Nuclear Research in the context of Oganesson

Oganesson is a synthetic chemical element; it has symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table.

Oganesson has the highest atomic number and highest atomic mass of all known elements. On the periodic table of the elements it is a p-block element, a member of group 18, and the last member of period 7. Its only known isotope, oganesson-294, is highly radioactive, with a half-life of 0.7 ms and, as of 2025, only five atoms have been successfully produced. This has so far prevented any experimental studies of its chemistry. Because of relativistic effects, theoretical studies predict that it would be a solid at room temperature, and significantly reactive, unlike the other members of group 18 (the noble gases).

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Flerovium

Flerovium is a synthetic chemical element; it has symbol Fl and atomic number 114. It is an extremely radioactive, superheavy element, named after the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research in Dubna, Russia, where the element was discovered in 1999. The lab's name, in turn, honours Russian physicist Georgy Flyorov (Флёров in Cyrillic, hence the transliteration of "yo" to "e"). IUPAC adopted the name on 30 May 2012. The name and symbol had previously been proposed for element 102 (nobelium) but were not accepted by IUPAC at that time.

It is a transactinide in the p-block of the periodic table. It is in period 7 and is the heaviest known member of the carbon group. Initial chemical studies in 2007–2008 indicated that flerovium was unexpectedly volatile for a group 14 element. More recent results show that flerovium's reaction with gold is similar to that of copernicium, showing it is very volatile and may even be gaseous at standard temperature and pressure. Nonetheless, it also seems to show some metallic properties, consistent with it being the heavier homologue of lead.

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Moscovium

Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.

Moscovium is an extremely radioactive element: its most stable known isotope, moscovium-290, has a half-life of only 0.65 seconds. In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 15 as the heaviest pnictogen. Moscovium is calculated to have some properties similar to its lighter homologues, nitrogen, phosphorus, arsenic, antimony, and bismuth, and to be a post-transition metal, although it should also show several major differences from them. In particular, moscovium should also have significant similarities to thallium, as both have one rather loosely bound electron outside a quasi-closed shell. Chemical experimentation on single atoms has confirmed theoretical expectations that moscovium is less reactive than its lighter homologue bismuth. Over a hundred atoms of moscovium have been observed to date, all of which have been shown to have mass numbers from 286 to 290.

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Livermorium

Livermorium is a synthetic chemical element; it has symbol Lv and atomic number 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named after the Lawrence Livermore National Laboratory in the United States, which collaborated with the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, to discover livermorium during experiments conducted between 2000 and 2006. The name of the laboratory refers to the city of Livermore, California, where it is located, which in turn was named after the rancher and landowner Robert Livermore. The name was adopted by IUPAC on May 30, 2012. Six isotopes of livermorium are known, with mass numbers of 288–293 inclusive; the longest-lived among them is livermorium-293 with a half-life of about 80 milliseconds. A seventh possible isotope with mass number 294 has been reported but not yet confirmed.

In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 16 as the heaviest chalcogen, but it has not been confirmed to behave as the heavier homologue to the chalcogen polonium. Livermorium is calculated to have some similar properties to its lighter homologues (oxygen, sulfur, selenium, tellurium, and polonium), and be a post-transition metal, though it should also show several major differences from them.

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Dubna

Dubna (Russian: Дубна́, IPA: [dʊbˈna]) is a town in Moscow Oblast, Russia, 45 miles (72 km) east of Tver and 69 miles (111 km) north of Moscow. It has a status of naukograd (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one of the largest scientific foundations in the country. It is also home to MKB Raduga, a defense aerospace company specializing in design and production of missile systems, as well as to the Russia's largest satellite communications center owned by Russian Satellite Communications Company. The modern town was developed in the middle of the 20th century and town status was granted to it in 1956. Population: 70,663 (2010 census); 60,951 (2002 census); 65,805 (1989 Soviet census).

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Yuri Oganessian

Yuri Tsolakovich Oganessian (born 14 April 1933) is an Armenian and Russian nuclear physicist who is best known as a researcher of superheavy elements. He has led the discovery of multiple chemical elements. He succeeded Georgy Flyorov as director of the Flyorov Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research in 1989 and is now its scientific director. The heaviest known element, oganesson, is named after him, only the second time that an element was named after a living person (the other is seaborgium).

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Georgy Flyorov

Georgy Flerov, also spelled Flyorov (Russian: Гео́ргий Никола́евич Флёров, romanized: Georgii Nikolayevich Flërov, IPA: [ɡʲɪˈorɡʲɪj nʲɪkɐˈlajɪvʲɪtɕ ˈflʲɵrəf]; 2 March 1913 – 19 November 1990), was a Soviet physicist who is known for his discovery of spontaneous fission and his important contribution towards crystallography and material science, for which, he was honored with many awards. In addition, he is also known for his letter directed to Joseph Stalin, during the midst of World War II, to start a program of nuclear weapons in the Soviet Union.

In 2012, element 114 was named flerovium after the research laboratory at the Joint Institute for Nuclear Research bearing his name.

↑ Return to Menu

Joint Institute for Nuclear Research in the context of Heavy ion

High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of high-energy physics. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the quark–gluon plasma. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities.

Previous high-energy nuclear accelerator experiments have studied heavy-ion collisions using projectile energies of 1 GeV/nucleon at JINR and LBNL-Bevalac up to 158 GeV/nucleon at CERN-SPS. Experiments of this type, called "fixed-target" experiments, primarily accelerate a "bunch" of ions (typically around 10 to 10 ions per bunch) to speeds approaching the speed of light (0.999c) and smash them into a target of similar heavy ions. While all collision systems are interesting, great focus was applied in the late 1990s to symmetric collision systems of gold beams on gold targets at Brookhaven National Laboratory's Alternating Gradient Synchrotron (AGS) and uranium beams on uranium targets at CERN's Super Proton Synchrotron.

↑ Return to Menu