Irreversible process in the context of "Death"

⭐ In the context of Death, an irreversible process is specifically characterized by…

Ad spacer

⭐ Core Definition: Irreversible process

In thermodynamics, an irreversible process is a process that cannot be undone. All complex natural processes are irreversible, although a phase transition at the coexistence temperature (e.g. melting of ice cubes in water) is well approximated as reversible.

A change in the thermodynamic state of a system and all of its surroundings cannot be precisely restored to its initial state by infinitesimal changes in some property of the system without expenditure of energy. A system that undergoes an irreversible process may still be capable of returning to its initial state. Because entropy is a state function, the change in entropy of the system is the same whether the process is reversible or irreversible. However, the impossibility occurs in restoring the environment to its own initial conditions. An irreversible process increases the total entropy of the system and its surroundings. The second law of thermodynamics can be used to determine whether a hypothetical process is reversible or not.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Irreversible process in the context of Death

Death is the end of life, the irreversible cessation of all biological functions that sustain a living organism. Death eventually and inevitably occurs in all organisms. The remains of a former organism normally begin to decompose shortly after death. Some organisms, such as Turritopsis dohrnii, are biologically immortal; however, they can still die from means other than aging. Death is generally applied to whole organisms; the equivalent for individual components of an organism, such as cells or tissues, is necrosis. Something that is not considered an organism can be physically destroyed but is not said to die, as it is not considered alive in the first place.

As of the early 21st century, 56 million people die per year. The most common reason is aging, followed by cardiovascular disease, which is a disease that affects the heart or blood vessels. As of 2022, an estimated total of almost 110 billion humans have died, or roughly 94% of all humans to have ever lived. A substudy of gerontology known as biogerontology seeks to eliminate death by natural aging in humans, often through the application of natural processes found in certain organisms. However, as humans do not have the means to apply this to themselves, they have to use other ways to reach the maximum lifespan for a human, often through lifestyle changes, such as calorie reduction, dieting, and exercise. The idea of lifespan extension is considered and studied as a way for people to live longer.

↓ Explore More Topics
In this Dossier

Irreversible process in the context of Time

Time is the continuous progression of existence that occurs in an apparently irreversible succession from the past, through the present, and into the future. Time dictates all forms of action, age, and causality, being a component quantity of various measurements used to sequence events, to compare the duration of events (or the intervals between them), and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions.

Time is primarily measured in linear spans or periods, ordered from shortest to longest. Practical, human-scale measurements of time are performed using clocks and calendars, reflecting a 24-hour day collected into a 365-day year linked to the astronomical motion of the Earth. Scientific measurements of time instead vary from Planck time at the shortest to billions of years at the longest. Measurable time is believed to have effectively begun with the Big Bang 13.8 billion years ago, encompassed by the chronology of the universe. Modern physics understands time to be inextricable from space within the concept of spacetime described by general relativity. Time can therefore be dilated by velocity and matter to pass faster or slower for an external observer, though this is considered negligible outside of extreme conditions, namely relativistic speeds or the gravitational pulls of black holes.

↑ Return to Menu

Irreversible process in the context of Entropy

Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory. It has found far-ranging applications in chemistry and physics, in biological systems and their relation to life, in cosmology, economics, and information systems including the transmission of information in telecommunication.

Entropy is central to the second law of thermodynamics, which states that the entropy of an isolated system left to spontaneous evolution cannot decrease with time. As a result, isolated systems evolve toward thermodynamic equilibrium, where the entropy is highest. "High" entropy means that energy is more disordered or dispersed, while "low" entropy means that energy is more ordered or concentrated. A consequence of the second law of thermodynamics is that certain processes are irreversible.

↑ Return to Menu

Irreversible process in the context of Died

Death is the end of life, the irreversible cessation of all biological functions that sustain a living organism. Death eventually and inevitably occurs in all organisms. The remains of a former organism normally begin to decompose shortly after death. Some organisms, such as Turritopsis dohrnii, are biologically immortal; however, they can still die from means other than aging. Death is generally applied to whole organisms; the equivalent for individual components of an organism, such as cells or tissues, is necrosis. Something that is not considered an organism may be said to die in a figurative sense when it reaches an inactive state, such as when a star runs out of fuel.

As of the early 21st century, 56 million people die per year. The most common reason is aging, followed by cardiovascular disease, which is a disease that affects the heart or blood vessels. As of 2022, an estimated total of almost 110 billion humans have died, or roughly 94% of all humans to have ever lived. A substudy of gerontology known as biogerontology seeks to eliminate death by natural aging in humans, often through the application of natural processes found in certain organisms. However, as humans do not have the means to apply this to themselves, they have to use other ways to reach the maximum lifespan for a human, often through lifestyle changes, such as calorie reduction, dieting, and exercise. The idea of lifespan extension is considered and studied as a way for people to live longer.

↑ Return to Menu

Irreversible process in the context of Hysteresis

Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Such a system is called hysteretic. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems, it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect.

Hysteresis can be found in physics, chemistry, engineering, biology, and economics. It is incorporated in many artificial systems: for example, in thermostats and Schmitt triggers, it prevents unwanted frequent switching.

↑ Return to Menu

Irreversible process in the context of Dissipation

In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system. In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form. For example, transfer of energy as heat is dissipative because it is a transfer of energy other than by thermodynamic work or by transfer of matter, and spreads previously concentrated energy. Following the second law of thermodynamics, in conduction and radiation from one body to another, the entropy varies with temperature (reduces the capacity of the combination of the two bodies to do work), but never decreases in an isolated system.

In mechanical engineering, dissipation is the irreversible conversion of mechanical energy into thermal energy with an associated increase in entropy.

↑ Return to Menu