Internet Engineering Task Force in the context of "Request for Comments"

Play Trivia Questions online!

or

Skip to study material about Internet Engineering Task Force in the context of "Request for Comments"




⭐ Core Definition: Internet Engineering Task Force

The Internet Engineering Task Force (IETF) is a standards organization for the Internet and is responsible for the technical standards that make up the Internet protocol suite (TCP/IP). It has no formal membership roster or requirements and all its participants are volunteers. Their work is usually funded by employers or other sponsors.

The IETF was initially supported by the federal government of the United States but since 1993 has operated under the auspices of the Internet Society, a non-profit organization with local chapters around the world.

↓ Menu

👉 Internet Engineering Task Force in the context of Request for Comments

A Request for Comments (RFC) is a publication in a series from the principal technical development and standards-setting bodies for the Internet, most prominently the Internet Engineering Task Force (IETF). An RFC is authored by individuals or groups of engineers and computer scientists in the form of a memorandum describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems. It is submitted either for peer review or to convey new concepts, information, or, occasionally, engineering humor.

The IETF adopts some of the proposals published as RFCs as Internet Standards. However, many RFCs are informational or experimental in nature and are not standards. The RFC system was invented by Steve Crocker in 1969 to help record unofficial notes on the development of ARPANET. RFCs have since become official documents of Internet specifications, communications protocols, procedures, and events. According to Crocker, the documents "shape the Internet's inner workings and have played a significant role in its success," but are not widely known outside the community.

↓ Explore More Topics
In this Dossier

Internet Engineering Task Force in the context of Opus (audio format)

Opus is a free and open source lossy audio coding format developed by the Xiph.Org Foundation and standardized by the Internet Engineering Task Force, designed for efficient low-latency encoding of both speech and general audio. Due to its lower latency relative to other standard codecs, Opus finds specific use cases in real-time interactive communication for low-end embedded processors. Opus replaces both Vorbis and Speex for new applications.

Opus combines the speech-oriented LPC-based SILK algorithm and the lower-latency MDCT-based CELT algorithm, switching between or combining them as needed. Bitrate, audio bandwidth, complexity, and algorithm choice can be adjusted for each individual frame. Opus has low algorithmic delay (26.5 ms by default) ideal for use as part of a real-time communication link, networked music performances, and live lip sync; by trading off quality or bitrate, the delay can be further reduced down to 5 ms. Its delay thus is significantly lower compared to competing codecs, which require well over 100 ms. Opus remains competitive with these formats in terms of quality per bitrate.

↑ Return to Menu

Internet Engineering Task Force in the context of IPv6

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

Devices on the Internet are assigned a unique IP address for identification and location definition. With the rapid growth of the Internet after commercialization in the 1990s, it became evident that far more addresses would be needed to connect devices than the 4,294,967,296 (2) IPv4 address space had available. By 1998, the IETF had formalized the successor protocol, IPv6 which uses 128-bit addresses, theoretically allowing 2, or 340,282,366,920,938,463,463,374,607,431,768,211,456 total addresses. The actual number is slightly smaller, as multiple ranges are reserved for special usage or completely excluded from general use. The two protocols are not designed to be interoperable, and thus direct communication between them is impossible, complicating the move to IPv6. However, several transition mechanisms have been devised to rectify this.

↑ Return to Menu

Internet Engineering Task Force in the context of Email address

An email address identifies an email box to which messages are delivered. While early messaging systems used a variety of formats for addressing, today, email addresses follow a set of specific rules originally standardized by the Internet Engineering Task Force (IETF) in the 1980s, and updated by RFC 5322 and 6854. The term email address in this article refers to just the addr-spec in Section 3.4 of RFC 5322. The RFC defines address more broadly as either a mailbox or group. A mailbox value can be either a name-addr, which contains a display-name and addr-spec, or the more common addr-spec alone.

An email address, such as john.smith@example.com, is made up from a local-part, the symbol @, and a domain, which may be a domain name or an IP address enclosed in brackets. Although the standard requires the local-part to be case-sensitive, it also urges that receiving hosts deliver messages in a case-independent manner, e.g., that the mail system in the domain example.com treat John.Smith as equivalent to john.smith; some mail systems even treat them as equivalent to johnsmith. Mail systems often limit the users' choice of name to a subset of the technically permitted characters; with the introduction of internationalized domain names, efforts are progressing to permit non-ASCII characters in email addresses.

↑ Return to Menu

Internet Engineering Task Force in the context of Internet standard

In computer network engineering, an Internet Standard is a normative specification of a technology or methodology applicable to the Internet. Internet Standards are created and published by the Internet Engineering Task Force (IETF). They allow interoperation of hardware and software from different sources which allows internets to function. As the Internet became global, Internet Standards became the lingua franca of worldwide communications.

Engineering contributions to the IETF start as an Internet Draft, may be promoted to a Request for Comments, and may eventually become an Internet Standard.

↑ Return to Menu

Internet Engineering Task Force in the context of CELT

Constrained Energy Lapped Transform (CELT) is an open, royalty-free lossy audio compression format and a free software codec with especially low algorithmic delay for use in low-latency audio communication. The algorithms are openly documented and may be used free of software patent restrictions. Development of the format was maintained by the Xiph.Org Foundation (as part of the Ogg codec family) and later coordinated by the Opus working group of the Internet Engineering Task Force (IETF).

CELT was meant to bridge the gap between Vorbis and Speex for applications where both high quality audio and low delay are desired. It is suitable for both speech and music. It borrows ideas from the CELP algorithm, but avoids some of its limitations by operating in the frequency domain exclusively.

↑ Return to Menu

Internet Engineering Task Force in the context of Internet Standard

Internet Standard (often abbreviated STD) is the highest maturity level in the Internet Engineering Task Force (IETF) standards track for Internet protocol specifications. Internet Standards are published as one or more Request for Comments (RFC) documents and are additionally assigned an STD number that identifies the standard as a whole (as distinct from the RFC document number).

The Internet Standards Process is defined in a series of IETF Best Current Practice documents, including RFC 2026 and RFC 6410. Not all RFCs are Internet Standards; RFCs may also be informational, experimental, or otherwise outside the standards track.

↑ Return to Menu