Inductive coupling in the context of Conductive coupling


Inductive coupling in the context of Conductive coupling

Inductive coupling Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Inductive coupling in the context of "Conductive coupling"


⭐ Core Definition: Inductive coupling

In electrical engineering, two conductors are said to be inductively coupled or magnetically coupled when they are configured in a way such that change in current through one wire induces a voltage across the ends of the other wire through electromagnetic induction. A changing current through the first wire creates a changing magnetic field around it by Ampere's circuital law. The changing magnetic field induces an electromotive force (EMF) voltage in the second wire by Faraday's law of induction. The amount of inductive coupling between two conductors is measured by their mutual inductance.

The coupling between two wires can be increased by winding them into coils and placing them close together on a common axis, so the magnetic field of one coil passes through the other coil. Coupling can also be increased by a magnetic core of a ferromagnetic material like iron or ferrite in the coils, which increases the magnetic flux. The two coils may be physically contained in a single unit, as in the primary and secondary windings of a transformer, or may be separated. Coupling may be intentional or unintentional. Unintentional inductive coupling can cause signals from one circuit to be induced into a nearby circuit, this is called cross-talk, and is a form of electromagnetic interference.

↓ Menu
HINT:

👉 Inductive coupling in the context of Conductive coupling

In electronics, direct coupling or DC coupling (also called conductive coupling and galvanic coupling) is the transfer of electrical energy by means of physical contact via a conductive medium, in contrast to inductive coupling and capacitive coupling. It is a way of interconnecting two circuits such that, in addition to transferring the AC signal (or information), the first circuit also provides DC bias to the second. Thus, DC blocking capacitors are not used or needed to interconnect the circuits. Conductive coupling passes the full spectrum of frequencies including direct current.

Such coupling may be achieved by a wire, resistor, or common terminal, such as a binding post or metallic bonding.

↓ Explore More Topics
In this Dossier

Inductive coupling in the context of Near-field communication

Near-field communication (NFC) is a set of communication protocols that enables communication between two electronic devices over a distance of 4 cm (1+12 in) or less. NFC offers a low-speed connection through a simple setup that can be used for the bootstrapping of capable wireless connections. Like other proximity card technologies, NFC is based on inductive coupling between two electromagnetic coils present on an NFC-enabled device such as a smartphone. NFC communicating in one or both directions uses a frequency of 13.56 MHz in the globally available unlicensed radio frequency ISM band, compliant with the ISO/IEC 18000-3 air interface standard at data rates ranging from 106 to 848 kbit/s.

The NFC Forum has helped define and promote the technology, setting standards for certifying device compliance. Secure communications are available by applying encryption algorithms as is done for credit cards and if they fit the criteria for being considered a personal area network.

View the full Wikipedia page for Near-field communication
↑ Return to Menu

Inductive coupling in the context of Crosstalk

In electronics, crosstalk (XT) is a phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, inductive, or conductive coupling from one circuit or channel to another.

Where the electric, magnetic, or traveling fields of two electric signals overlap, the electromagnetic interference created causes crosstalk. For example, crosstalk can comprise magnetic fields that induce a smaller signal in neighboring wires.

View the full Wikipedia page for Crosstalk
↑ Return to Menu

Inductive coupling in the context of Wireless power transfer

Wireless power transfer (WPT; also wireless energy transmission or WET) is the transmission of electrical energy without wires as a physical link. In a wireless power transmission system, an electrically powered transmitter device generates a time-varying electromagnetic field that transmits power across space to a receiver device; the receiver device extracts power from the field and supplies it to an electrical load. The technology of wireless power transmission can eliminate the use of the wires and batteries, thereby increasing the mobility, convenience, and safety of an electronic device for all users. Wireless power transfer is useful to power electrical devices where interconnecting wires are inconvenient, hazardous, or are not possible.

Wireless power techniques mainly fall into two categories: Near and far field. In near field or non-radiative techniques, power is transferred over short distances by magnetic fields using inductive coupling between coils of wire, or by electric fields using capacitive coupling between metal electrodes. Inductive coupling is the most widely used wireless technology; its applications include charging handheld devices like phones and electric toothbrushes, RFID tags, induction cooking, and wirelessly charging or continuous wireless power transfer in implantable medical devices like artificial cardiac pacemakers, or electric vehicles. In far-field or radiative techniques, also called power beaming, power is transferred by beams of electromagnetic radiation, like microwaves or laser beams. These techniques can transport energy longer distances but must be aimed at the receiver. Proposed applications for this type include solar power satellites and wireless powered drone aircraft.

View the full Wikipedia page for Wireless power transfer
↑ Return to Menu

Inductive coupling in the context of Balun

A balun /ˈbælʌn/ (from "balanced to unbalanced", originally, but now derived from "balancing unit") is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

View the full Wikipedia page for Balun
↑ Return to Menu