Incandescence in the context of "Ember"

Play Trivia Questions online!

or

Skip to study material about Incandescence in the context of "Ember"

Ad spacer

⭐ Core Definition: Incandescence

Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electronic, molecular, and lattice oscillations in a material. Kinetic energy is converted to electromagnetism due to charge-acceleration or dipole oscillation. At room temperature, most of the emission is in the infrared (IR) spectrum, though above around 525 °C (977 °F) enough of it becomes visible for the matter to visibly glow. This visible glow is called incandescence. Thermal radiation is one of the fundamental mechanisms of heat transfer, along with conduction and convection.

The primary method by which the Sun transfers heat to the Earth is thermal radiation. This energy is partially absorbed and scattered in the atmosphere, the latter process being the reason why the sky is visibly blue. Much of the Sun's radiation transmits through the atmosphere to the surface where it is either absorbed or reflected.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Incandescence in the context of Ember

An ember, also called a hot coal, is a hot lump of smouldering solid fuel, typically glowing, composed of greatly heated wood, coal, or other carbon-based material. Embers (hot coals) can exist within, remain after, or sometimes precede, a fire. Embers are, in some cases, as hot as the fire which created them. They radiate a substantial amount of heat long after the fire has been extinguished, and if not taken care of properly can rekindle a fire that is thought to be completely extinguished and can pose a fire hazard. In order to avoid the danger of accidentally spreading a fire, many campers pour water on the embers or cover them in dirt. Alternatively, embers can be used to relight a fire after it has gone out without the need to rebuild the fire – in a conventional fireplace, a fire can easily be relit up to 12 hours after it goes out, provided that there is enough space for air to circulate between the embers and the introduced fuel.

They are often used for cooking, such as in charcoal barbecues. This is because embers radiate a more consistent form of heat, as opposed to an open fire, which is constantly changing along with the heat it radiates.

↓ Explore More Topics
In this Dossier

Incandescence in the context of Incandescent light bulb

An incandescent light bulb, also known as an incandescent lamp or incandescent light globe, is an electric light that produces illumination by Joule heating a filament until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Electric current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

Incandescent bulbs are manufactured in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment, have low manufacturing costs, and work equally well on either alternating current or direct current. As a result, the incandescent bulb became widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting.

↑ Return to Menu

Incandescence in the context of Sun

The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is the main source of energy for life on Earth. The Sun has been an object of veneration in many cultures and a central subject for astronomical research since antiquity.

The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years. Its mean distance from Earth is about 1.496×10 kilometres or about 8 light-minutes. The distance between the Sun and the Earth was used to define a unit of length called the astronomical unit, now defined to be 149.5978707×10 kilometres. Its diameter is about 1,391,400 km (864,600 mi), 109 times that of Earth. The Sun's mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. The mass of the Sun's surface layer, its photosphere, consists mostly of hydrogen (~73%) and helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.

↑ Return to Menu

Incandescence in the context of Joule heating

Joule heating (also known as resistive heating, resistance heating, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.

Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, states that the power of heating generated by an electrical conductor equals the product of its resistance and the square of the current. Joule heating affects the whole electric conductor, unlike the Peltier effect which transfers heat from one electrical junction to another.

↑ Return to Menu

Incandescence in the context of Combustion

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion (e.g., using a lit match to light a fire), the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.

Combustion is often a complicated sequence of elementary radical reactions. Solid fuels, such as wood and coal, first undergo endothermic pyrolysis to produce gaseous fuels whose combustion then supplies the heat required to produce more of them. Combustion is often hot enough that incandescent light in the form of either glowing or a flame is produced. A simple example can be seen in the combustion of hydrogen and oxygen into water vapor, a reaction which is commonly used to fuel rocket engines. This reaction releases 242 kJ/mol of heat and reduces the enthalpy accordingly (at constant temperature and pressure):

↑ Return to Menu

Incandescence in the context of Spark (fire)

A spark is an incandescent particle. Sparks may be produced by pyrotechnics, by metalworking or as a by-product of fires, especially when burning wood.

↑ Return to Menu

Incandescence in the context of Luminescence

Luminescence is a spontaneous emission of radiation from an electronically or vibrationally excited species not in thermal equilibrium with its environment. A luminescent object emits cold light in contrast to incandescence, where an object only emits light after heating. Generally, the emission of light is due to the movement of electrons between different energy levels within an atom after excitation by external factors. However, the exact mechanism of light emission in vibrationally excited species is unknown.

The dials, hands, scales, and signs of aviation and navigational instruments and markings are often coated with luminescent materials in a process known as luminising.

↑ Return to Menu

Incandescence in the context of Gas lamps

Gas lighting is the production of artificial light from combustion of a fuel gas such as natural gas, methane, propane, butane, acetylene, ethylene, hydrogen, carbon monoxide, or coal gas (sometimes called town gas). The light is produced either directly by the flame, generally by using special mixes (typically propane or butane) of illuminating gas to increase brightness, or indirectly with other components such as the gas mantle or the limelight, with the gas primarily functioning to heat the mantle or the lime to incandescence.

Before electricity became sufficiently widespread and economical to allow for general public use, gas lighting was prevalent for outdoor and indoor use in cities and suburbs where the infrastructure for distribution of gas was practical. At that time, the most common fuels for gas lighting were wood gas, coal gas and, in limited cases, water gas. Early gas lights were ignited manually by lamplighters, although many later designs are self-igniting.

↑ Return to Menu