Higgs boson in the context of "Spontaneous symmetry breaking"

Play Trivia Questions online!

or

Skip to study material about Higgs boson in the context of "Spontaneous symmetry breaking"

Ad spacer

⭐ Core Definition: Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson that couples to (interacts with) particles whose mass arises from their interactions with the Higgs Field, has zero spin, even (positive) parity, no electric charge, and no colour charge. It is also very unstable, decaying into other particles almost immediately upon generation.

The Higgs field is a scalar field with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its "sombrero potential" leads it to take a nonzero value everywhere (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction and, via the Higgs mechanism, gives a rest mass to all massive elementary particles of the Standard Model, including the Higgs boson itself. The existence of the Higgs field became the last unverified part of the Standard Model of particle physics, and for several decades was considered "the central problem in particle physics".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Higgs boson in the context of Standard Model

The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, weak and strong interactions – excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

Although the Standard Model is believed to be theoretically self-consistent and has demonstrated some success in providing experimental predictions, it leaves some physical phenomena unexplained and so falls short of being a complete theory of fundamental interactions. For example, it does not fully explain why there is more matter than anti-matter, incorporate the full theory of gravitation as described by general relativity, or account for the universe's accelerating expansion as possibly described by dark energy. The model does not contain any viable dark matter particle that possesses all of the required properties deduced from observational cosmology. It also does not incorporate neutrino oscillations and their non-zero masses.

↑ Return to Menu

Higgs boson in the context of Boson

In particle physics, a boson (/ˈbzɒn/ /ˈbsɒn/) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer spin (1/2, 3/2, 5/2, ...). Every observed subatomic particle is either a boson or a fermion. Paul Dirac coined the name boson to commemorate the contribution of Satyendra Nath Bose, an Indian physicist.

Some bosons are elementary particles occupying a special role in particle physics, distinct from the role of fermions (which are sometimes described as the constituents of "ordinary matter"). Certain elementary bosons (e.g. gluons) act as force carriers, which give rise to forces between other particles, while one (the Higgs boson) contributes to the phenomenon of mass. Other bosons, such as mesons, are composite particles made up of smaller constituents.

↑ Return to Menu

Higgs boson in the context of Large Hadron Collider

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, and hundreds of universities and laboratories across more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

The first collisions were achieved in 2010 at an energy of 3.5 tera-electronvolts (TeV) per beam, about four times the previous world record. The discovery of the Higgs boson at the LHC was announced in 2012. Between 2013 and 2015, the LHC was shut down and upgraded; after those upgrades it reached 6.5 TeV per beam (13.0 TeV total collision energy). At the end of 2018, it was shut down for maintenance and further upgrades, and reopened over three years later in April 2022.

↑ Return to Menu

Higgs boson in the context of Boson field

In quantum field theory, a bosonic field is a quantum field whose quanta are bosons; that is, they obey Bose–Einstein statistics. Bosonic fields obey canonical commutation relations, as distinct from the canonical anticommutation relations obeyed by fermionic fields.

Examples include scalar fields, describing spin-0 particles such as the Higgs boson, and gauge fields, describing spin-1 particles such as the photon.

↑ Return to Menu

Higgs boson in the context of Bare mass

In quantum field theory, specifically the theory of renormalization, the bare mass of an elementary particle is the limit of its mass as the scale of distance approaches zero or, equivalently, as the energy of a particle collision approaches infinity. It differs from the invariant mass as usually understood because the latter includes the 'clothing' of the particle by pairs of virtual particles that are temporarily created by the fields around the particle. In some versions of QFT, the bare mass of some particles may be plus or minus infinity. In the theory of the electroweak interaction using the Higgs boson, all particles have a bare mass of zero.

This allows us to write , where denotes the experimentally observable mass of the particle, its bare mass, and the increase in mass owing to the interaction of the particle with the medium or field.

↑ Return to Menu

Higgs boson in the context of Higgs mechanism

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W, W, and Z bosons actually have relatively large masses of around 80 GeV/c. The Higgs field resolves this conundrum. The simplest description of the mechanism adds to the Standard Model a quantum field (the Higgs field), which permeates all of space. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons with which it interacts to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature.

The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries never can be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

↑ Return to Menu