Ice core in the context of "Global surface temperature"

⭐ In the context of global surface temperature, what role do ice cores play in understanding past climate conditions?

Ad spacer

⭐ Core Definition: Ice core

An ice core is a core sample that is typically removed from an ice sheet or a high mountain glacier. Since the ice forms from the incremental buildup of annual layers of snow, lower layers are older than upper ones, and an ice core contains ice formed over a range of years. Cores are drilled with hand augers (for shallow holes) or powered drills; they can reach depths of over two miles (3.2 km), and contain ice up to 800,000 years old.

The physical properties of the ice and of material trapped in it can be used to reconstruct the climate over the age range of the core. The proportions of different oxygen and hydrogen isotopes provide information about ancient temperatures, and the air trapped in tiny bubbles can be analysed to determine the level of atmospheric gases such as carbon dioxide. Since heat flow in a large ice sheet is very slow, the borehole temperature is another indicator of temperature in the past. This data can be combined to find the climate model that best fits all the available data.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ice core in the context of Global surface temperature

Global surface temperature (GST) is the average temperature of Earth's surface at a given time. It is a combination of sea surface temperature and the near-surface air temperature over land, weighted by their respective areas. Temperature data comes mainly from weather stations and satellites. To estimate data in the distant past, proxy data can be used for example from tree rings, corals, and ice cores. Observing the rising GST over time is one of the many lines of evidence supporting the scientific consensus on climate change, which is that human activities are causing climate change. Alternative terms for the same concept are global mean surface temperature (GMST) or global average surface temperature.

Series of reliable temperature measurements in some regions began in the 1850—1880 time frame (this is called the instrumental temperature record). The longest-running temperature record is the Central England temperature data series, which starts in 1659. The longest-running quasi-global records start in 1850. For temperature measurements in the upper atmosphere a variety of methods can be used. This includes radiosondes launched using weather balloons, a variety of satellites, and aircraft. Satellites can monitor temperatures in the upper atmosphere but are not commonly used to measure temperature change at the surface. Ocean temperatures at different depths are measured to add to global surface temperature datasets. This data is also used to calculate the ocean heat content.

↓ Explore More Topics
In this Dossier

Ice core in the context of National Snow and Ice Data Center

The National Snow and Ice Data Center (NSIDC) is a United States information and referral center in support of polar and cryospheric research. NSIDC archives and distributes digital and analog snow and ice data and also maintains information about snow cover, avalanches, glaciers, ice sheets, freshwater ice, sea ice, ground ice, permafrost, atmospheric ice, paleoglaciology, and ice cores.

NSIDC is part of the University of Colorado Boulder Cooperative Institute for Research in Environmental Sciences (CIRES), and is affiliated with the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information through a cooperative agreement. NSIDC serves as one of twelve Distributed Active Archive Centers funded by the National Aeronautics and Space Administration to archive and distribute data from NASA's past and current satellites and field measurement programs. NSIDC also supports the National Science Foundation through the Exchange For Local Observations and Knowledge of the Arctic (ELOKA) and other scientific research grants. NSIDC is also a member of the ICSU World Data System. sujit Serreze is the director of NSIDC.

↑ Return to Menu

Ice core in the context of Climate proxy

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

A large number of climate proxies have been studied from a variety of geologic contexts. Examples of proxies include stable isotope measurements from ice cores, growth rates in tree rings, species composition of sub-fossil pollen in lake sediment or foraminifera in ocean sediments, temperature profiles of boreholes, and stable isotopes and mineralogy of corals and carbonate speleothems. In each case, the proxy indicator has been influenced by a particular seasonal climate parameter (e.g., summer temperature or monsoon intensity) at the time in which they were laid down or grew. Interpretation of climate proxies requires a range of ancillary studies, including calibration of the sensitivity of the proxy to climate and cross-verification among proxy indicators.

↑ Return to Menu

Ice core in the context of Methane clathrate

Methane clathrate (CH4·5.75H2O) or (4CH4·23H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth (around 1100 m below the sea level). Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.

Methane clathrates are common constituents of the shallow marine geosphere and they occur in deep sedimentary structures and form outcrops on the ocean floor. Methane hydrates are believed to form by the precipitation or crystallisation of methane migrating from deep along geological faults. Precipitation occurs when the methane comes in contact with water within the sea bed subject to temperature and pressure. In 2008, research on Antarctic Vostok Station and EPICA Dome C ice cores revealed that methane clathrates were also present in deep Antarctic ice cores and record a history of atmospheric methane concentrations, dating to 800,000 years ago. The ice-core methane clathrate record is a primary source of data for global warming research, along with oxygen and carbon dioxide.

↑ Return to Menu

Ice core in the context of Vostok Station

Vostok Station (Russian: станция Восток, romanizedstantsiya Vostok, IPA: [ˈstant͡sɨjə vɐˈstok], lit.'station east') is a Russian research station in inland Princess Elizabeth Land, Antarctica. Founded by the Soviet Union in 1957, the station lies at the southern Pole of Cold, with the lowest reliably measured natural temperature on Earth of −89.2 °C (−128.6 °F; 184.0 K). Research includes ice core drilling and magnetometry. Vostok was named after Vostok, the lead ship of the First Russian Antarctic Expedition captained by Fabian von Bellingshausen. The Bellingshausen Station was named after this captain (the second ship, Mirny, captained by Mikhail Lazarev, became the namesake for Mirny Station).

↑ Return to Menu

Ice core in the context of Scientific drilling

Scientific drilling into the Earth is a way for scientists to probe the Earth's sediments, crust, and upper mantle. In addition to rock samples, drilling technology can unearth samples of connate fluids and of the subsurface biosphere, mostly microbial life, preserved in drilled samples. Scientific drilling is carried out on land by the International Continental Scientific Drilling Program (ICDP) and at sea by the Integrated Ocean Drilling Program (IODP). Scientific drilling on the continents includes drilling down into solid ground as well as drilling from small boats on lakes. Sampling thick glaciers and ice sheets to obtain ice cores is related but will not be described further here.

Like probes sent into outer space, scientific drilling is a technology used to obtain samples from places that people cannot reach. Human beings have descended as deep as 2,212 m (7,257 ft) in Veryovkina Cave, the world's deepest known cave, located in the Caucasus Mountains of the country of Georgia. Gold miners in South Africa regularly go deeper than 3,400 m, but no human has ever descended to greater depths than this below the Earth's solid surface. As depth increases into the Earth, temperature and pressure rise. Temperatures in the crust increase about 15 °C per kilometer, making it impossible for humans to exist at depths greater than several kilometers, even if it was somehow possible to keep shafts open in spite of the tremendous pressure.

↑ Return to Menu

Ice core in the context of Roosevelt Island, Antarctica

Roosevelt Island is the second largest ice rise of Antarctica and world-wide, after Berkner Island. Despite its name, it is not an island, since the bedrock below the ice at its highest part is below sea level. It is about 130 km (81 mi) long in a NW-SE direction, 65 km (40 mi) wide and about 7,500 km (2,896 sq mi) in area, lying under the eastern part of the Ross Ice Shelf of Antarctica. Its central ridge rises to about 550 m (1,804 ft) above sea level, but this and all other elevations of the ice rise are completely covered by ice, so that it is invisible at ground level.

Examination of how the ice flows above it establishes the existence and extent of the ice rise. Radar surveying carried out between 1995 and 2013 showed that the Raymond Effect was operating beneath the ice divide.The ice rise has become a focus of the Roosevelt Island Climate Evolution (RICE) research using ice coring.

↑ Return to Menu