Hard disk drive in the context of Data storage device


Hard disk drive in the context of Data storage device

Hard disk drive Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Hard disk drive in the context of "Data storage device"


HINT:

In this Dossier

Hard disk drive in the context of Portable media player

A portable media player (PMP) or digital audio player (DAP) is a portable consumer electronics device capable of storing and playing digital media such as audio, images, and video files. Normally, they refer to small, battery-powered devices utilising flash memory or a hard disk for storing various media files. MP3 players has been a popular alternative name used for such devices, even if they also support other file formats and media types other than MP3 (for example AAC, FLAC, WMA).

Generally speaking, PMPs are equipped with a 3.5 mm headphone jack which can be used for headphones or to connect to a boombox, home audio system, or connect to car audio and home stereos wired or via a wireless connection such as Bluetooth, and some may include radio tuners, voice recording and other features. In contrast, analogue portable audio players play music from non-digital media that use analogue media, such as cassette tapes or vinyl records. As devices became more advanced, the PMP term was later introduced to describe players with additional capabilities such as video playback (they used to also be called "MP4 players"). The PMP term has also been used as an umbrella name to describe any portable device for multimedia, including physical formats (such as portable CD players) or handheld game consoles with such capabilities.

View the full Wikipedia page for Portable media player
↑ Return to Menu

Hard disk drive in the context of Camcorder

A camcorder is a self-contained portable electronic device with video and recording as its primary function. It is typically equipped with an articulating screen mounted on the left side, a belt to facilitate holding on the right side, hot-swappable battery facing towards the user, hot-swappable recording media, and an internally contained quiet optical zoom lens.

The earliest camcorders were tape-based, recording analog signals onto videotape cassettes. In the 2000s, digital recording became the norm, and additionally tape was replaced by storage media such as mini-HDD, MiniDVD, internal flash memory and SD cards.

View the full Wikipedia page for Camcorder
↑ Return to Menu

Hard disk drive in the context of Hysteresis

Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Such a system is called hysteretic. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems, it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect.

Hysteresis can be found in physics, chemistry, engineering, biology, and economics. It is incorporated in many artificial systems: for example, in thermostats and Schmitt triggers, it prevents unwanted frequent switching.

View the full Wikipedia page for Hysteresis
↑ Return to Menu

Hard disk drive in the context of Desktop computer

A desktop computer, often abbreviated as desktop, is a personal computer designed for regular use at a stationary location on or near a desk (as opposed to a portable computer) due to its size and power requirements. The most common configuration has a case that houses the power supply, motherboard (a printed circuit board with a microprocessor as the central processing unit, memory, bus, certain peripherals and other electronic components), disk storage (usually one or more hard disk drives, solid-state drives, optical disc drives, and in early models floppy disk drives); a keyboard and mouse for input; and a monitor, speakers, and, often, a printer for output. The case may be oriented horizontally or vertically and placed either underneath, beside, or on top of a desk.

Desktop computers with their cases oriented vertically are referred to as towers. As the majority of cases offered since the mid 1990s are in this form factor, the term desktop has been retronymically used to refer to modern cases offered in the traditional horizontal orientation.

View the full Wikipedia page for Desktop computer
↑ Return to Menu

Hard disk drive in the context of Ferrimagnetic

A ferrimagnetic material is a material that has populations of atoms with opposing magnetic moments, as in antiferromagnetism, but these moments are unequal in magnitude, so a spontaneous magnetization remains. This can for example occur when the populations consist of different atoms or ions (such as Fe and Fe).

Like ferromagnetic substances, ferrimagnetic substances are attracted by magnets and can be magnetized to make permanent magnets. The oldest known magnetic substance, magnetite (Fe3O4), is ferrimagnetic, but was classified as a ferromagnet before Louis Néel discovered ferrimagnetism in 1948. Since the discovery, numerous uses have been found for ferrimagnetic materials, such as hard-drive platters and biomedical applications.

View the full Wikipedia page for Ferrimagnetic
↑ Return to Menu

Hard disk drive in the context of Solid state (electronics)

Solid-state electronics are semiconductor electronics: electronic equipment that use semiconductor devices such as transistors, diodes and integrated circuits (ICs). The term is also used as an adjective for devices in which semiconductor electronics that have no moving parts replace devices with moving parts, such as the solid-state relay, in which transistor switches are used in place of a moving-arm electromechanical relay, or the solid-state drive (SSD), a type of semiconductor memory used in computers to replace hard disk drives, which store data on a rotating disk.

View the full Wikipedia page for Solid state (electronics)
↑ Return to Menu

Hard disk drive in the context of Tape head

A tape head is a type of transducer used in tape recorders to convert electrical signals to magnetic fluctuations and vice versa. They can also be used to read credit/debit/gift cards because the strip of magnetic tape on the back of a credit card stores data the same way that other magnetic tapes do. Cassette tapes, reel-to-reel tapes, 8-track tapes, VHS tapes, and even floppy disks and early hard disk drives all use the same principle of physics to store and read back information. The medium is magnetized in a pattern. It then moves at a constant speed over an electromagnet. Since the moving tape is carrying a changing magnetic field with it, it induces a varying voltage across the head. That voltage can then be amplified and connected to speakers in the case of audio, or measured and sorted into ones and zeroes in the case of digital data.

View the full Wikipedia page for Tape head
↑ Return to Menu

Hard disk drive in the context of Disk storage

Disk storage (also sometimes called drive storage) is a data storage mechanism based on a rotating disk. The recording employs various electronic, magnetic, optical, or mechanical changes to the disk's surface layer. A disk drive is a device implementing such a storage mechanism. Notable types are hard disk drives (HDD), containing one or more non-removable rigid platters; the floppy disk drive (FDD) and its removable floppy disk; and various optical disc drives (ODD) and associated optical disc media.

(The spelling disk and disc are used interchangeably except where trademarks preclude one usage, e.g., the Compact Disc logo. The choice of a particular form is frequently historical, as in IBM's usage of the disk form beginning in 1956 with the "IBM 350 disk storage unit".)

View the full Wikipedia page for Disk storage
↑ Return to Menu

Hard disk drive in the context of Mass storage

In computing, mass storage refers to the storage of large amounts of data in a persisting and machine-readable fashion. In general, the term mass in mass storage is used to mean large in relation to contemporaneous hard disk drives, but it has also been used to mean large relative to the size of primary memory as for example with floppy disks on personal computers.

Devices and/or systems that have been described as mass storage include tape libraries, RAID systems, and a variety of computer drives such as hard disk drives (HDDs), magnetic tape drives, magneto-optical disc drives, optical disc drives, memory cards, and solid-state drives (SSDs). It also includes experimental forms like holographic memory. Mass storage includes devices with removable and non-removable media. It does not include random access memory (RAM).

View the full Wikipedia page for Mass storage
↑ Return to Menu

Hard disk drive in the context of Xbox 360

The Xbox 360 is a home video game console developed by Microsoft, being the successor to the original Xbox and the second console in the Xbox series. It was officially unveiled on MTV in a program titled MTV Presents Xbox: The Next Generation Revealed on May 12, 2005, with detailed launch and game information announced later that month at the 2005 Electronic Entertainment Expo (E3). As a seventh-generation console, it primarily competed with Sony's PlayStation 3 and Nintendo's Wii.

The Xbox 360's online service, Xbox Live, was expanded from its previous iteration on the original Xbox and received regular updates during the console's lifetime. Available in free and subscription-based varieties, Xbox Live allows users to play games online; download games (through Xbox Live Arcade) and game demos; purchase and stream music, television programs, and films through the Xbox Music and Xbox Video portals; and access third-party content services through media streaming applications. In addition to online multimedia features, it allows users to stream media from local PCs. Several peripherals have been released, including wireless controllers, expanded hard drive storage, and the Kinect motion sensing camera. The release of these additional services and peripherals helped the Xbox brand grow from gaming-only to encompassing all multimedia, turning it into a hub for living-room computing entertainment.

View the full Wikipedia page for Xbox 360
↑ Return to Menu

Hard disk drive in the context of Neodymium magnet

A neodymium magnet (also known as NdFeB, NIB or Neo magnet) is a permanent magnet made from an alloy of neodymium, iron, and boron that forms the Nd2Fe14B tetragonal crystalline structure. They are the most widely used type of rare-earth magnet.

Developed independently in 1984 by General Motors and Sumitomo Special Metals, neodymium magnets are the strongest type of permanent magnet available commercially. They have replaced other types of magnets in many applications in modern products that require strong permanent magnets, such as electric motors in cordless tools, hard disk drives and magnetic fasteners.

View the full Wikipedia page for Neodymium magnet
↑ Return to Menu

Hard disk drive in the context of Kernel (operating system)

A kernel is a computer program at the core of a computer's operating system that always has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources (e.g. I/O, memory, cryptography) via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the use of common resources, such as CPU, cache, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup (after the bootloader). It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.

The critical code of the kernel is usually loaded into a separate area of memory, which is protected from access by application software or other less critical parts of the operating system. The kernel performs its tasks, such as running processes, managing hardware devices such as the hard disk, and handling interrupts, in this protected kernel space. In contrast, application programs such as browsers, word processors, or audio or video players use a separate area of memory, user space. This prevents user data and kernel data from interfering with each other and causing instability and slowness, as well as preventing malfunctioning applications from affecting other applications or crashing the entire operating system. Even in systems where the kernel is included in application address spaces, memory protection is used to prevent unauthorized applications from modifying the kernel.

View the full Wikipedia page for Kernel (operating system)
↑ Return to Menu

Hard disk drive in the context of Catastrophic failure

A catastrophic failure is a sudden and total failure from which recovery is impossible. Catastrophic failures often lead to cascading systems failure. The term is most commonly used for structural failures, but has often been extended to many other disciplines in which total and irrecoverable loss occurs, such as a head crash occurrence on a hard disk drive.

For example, catastrophic failure can be observed in steam turbine rotor failure, which can occur due to peak stress on the rotor; stress concentration increases up to a point at which it is excessive, leading ultimately to the failure of the disc.

View the full Wikipedia page for Catastrophic failure
↑ Return to Menu

Hard disk drive in the context of Tape drive

A tape drive is a data storage device that reads and writes data on a magnetic tape. Magnetic-tape data storage is typically used for offline, archival data storage. Tape media generally has a favorable unit cost and long archival stability.

A tape drive provides sequential access storage, unlike a hard disk drive, which provides direct access storage. A disk drive can move to any position on the disk in a few milliseconds, but a tape drive must physically wind tape between reels to read any one particular piece of data. As a result, tape drives have very large average access times. However, tape drives can stream data very quickly off a tape when the required position has been reached. For example, as of 2017 Linear Tape-Open (LTO) supports continuous data transfer rates of up to 360 MB/s, a rate comparable to hard disk drives.

View the full Wikipedia page for Tape drive
↑ Return to Menu

Hard disk drive in the context of Computer cooling

Computer cooling is required to remove the waste heat produced by computer hardware, to keep components within permissible operating temperature limits. Components that are susceptible to temporary malfunction or permanent failure if overheated include integrated circuits such as central processing units (CPUs), chipsets, graphics cards, hard disk drives, and solid state drives (SSDs).

Components are often designed to generate as little heat as possible, and computers and operating systems may be designed to reduce power consumption and consequent heating according to workload, but more heat may still be produced than can be removed without attention to cooling. Use of heatsinks cooled by airflow reduces the temperature rise produced by a given amount of heat. Attention to patterns of airflow can prevent the development of hotspots. Computer fans are widely used along with heatsink fans to reduce temperature by actively exhausting hot air. There are also other cooling techniques, such as liquid cooling. All modern day processors are designed to cut out or reduce their voltage or clock speed if the internal temperature of the processor exceeds a specified limit. This is generally known as Thermal Throttling in the case of reduction of clock speeds, or Thermal Shutdown in the case of a complete shutdown of the device or system.

View the full Wikipedia page for Computer cooling
↑ Return to Menu