Hamiltonian operator in the context of Time-evolution operator


Hamiltonian operator in the context of Time-evolution operator

⭐ Core Definition: Hamiltonian operator

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

The Hamiltonian is named after William Rowan Hamilton, who developed a revolutionary reformulation of Newtonian mechanics, known as Hamiltonian mechanics, which was historically important to the development of quantum physics. Similar to vector notation, it is typically denoted by , where the hat indicates that it is an operator. It can also be written as or .

↓ Menu
HINT:

In this Dossier

Hamiltonian operator in the context of Relativistic quantum mechanics

In physics, relativistic quantum mechanics (RQM) is any Poincaré-covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high-energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.

Key features common to all RQMs include: the prediction of antimatter, spin magnetic moments of elementary spin-1/2 fermions, fine structure, and quantum dynamics of charged particles in electromagnetic fields. The key result is the Dirac equation, from which these predictions emerge automatically. By contrast, in non-relativistic quantum mechanics, terms have to be introduced artificially into the Hamiltonian operator to achieve agreement with experimental observations.

View the full Wikipedia page for Relativistic quantum mechanics
↑ Return to Menu