Green alga in the context of "Accessory pigment"

Play Trivia Questions online!

or

Skip to study material about Green alga in the context of "Accessory pigment"

Ad spacer

⭐ Core Definition: Green alga

The green algae (sg.: green alga) are a group of chlorophyll-containing autotrophic algae consisting of the phylum Prasinodermophyta and its unnamed sister group that contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophyta) have emerged deep within the charophytes as a sister of the Zygnematophyceae. Since the realization that the Embryophyta emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid (spherical), and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae, many of which live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

A few other organisms rely on green algae to conduct photosynthesis for them. The chloroplasts in dinoflagellates of the genus Lepidodinium, euglenids and chlorarachniophytes were acquired from ingested endosymbiont green algae, and in the latter retain a nucleomorph (vestigial nucleus). Green algae are also found symbiotically in the ciliate Paramecium, and in Hydra viridissima and in flatworms. Some species of green algae, particularly of genera Trebouxia of the class Trebouxiophyceae and Trentepohlia (class Ulvophyceae), can be found in symbiotic associations with fungi to form lichens. In general, the fungal species that partner in lichens cannot live on their own, while the algal species is often found living in nature without the fungus. Trentepohlia is a filamentous green alga that can live independently on humid soil, rocks or tree bark or form the photosymbiont in lichens of the family Graphidaceae. Also the macroalga Prasiola calophylla (Trebouxiophyceae) is terrestrial, andPrasiola crispa, which live in the supralittoral zone, is terrestrial and can in the Antarctic form large carpets on humid soil, especially near bird colonies.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Green alga in the context of Spirogyra

Spirogyra (common names include water silk, mermaid's tresses, and blanket weed) is a genus of filamentous charophyte green algae of the order Zygnematales, named for the helical or spiral arrangement of the chloroplasts that is characteristic of the genus. Spirogyra species, of which there are more than 500, are commonly found in freshwater habitats. Spirogyra measures approximately 10 to 150 micrometres in width (though not usually more than 60) and may grow to several centimetres in length.

↑ Return to Menu

Green alga in the context of Chlorarachniophyte

The chlorarachniophytes are a small group of exclusively marine algae widely distributed in tropical and temperate waters. They are typically mixotrophic, ingesting bacteria and smaller protists as well as conducting photosynthesis. Normally they have the form of small amoebae, with branching cytoplasmic extensions that capture prey and connect the cells together, forming a net. These extensions are dependent on the presence of light and polymerization of the actin cytoskeleton. They may also form flagellate zoospores, which characteristically have a single subapical flagellum that spirals backwards around the cell body, and walled coccoid cells.

The chloroplasts were presumably acquired by ingesting some green alga. They are surrounded by four membranes, the outermost of which is continuous with the endoplasmic reticulum, and contain a small nucleomorph between the middle two, which is a remnant of the alga's nucleus. This contains a small amount of DNA and divides without forming a mitotic spindle. The origin of the chloroplasts from green algae is supported by their pigmentation, which includes chlorophylls a and b, and by genetic similarities. The only other groups of algae that contain nucleomorphs are a few species of dinoflagellates, which also have plastids originating from green algae, and the cryptomonads, which acquired their chloroplasts from a red alga.

↑ Return to Menu

Green alga in the context of Trebouxia

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

An ancestor of Trebouxia may have introduced photosynthesis into terrestrial habitats approximately 450 million years ago. It is also a bioindicator of habitat disturbances, freshwater quality, air pollution, carbon dioxide concentration, and climate change. Furthermore, its life cycle is complex and much research needs to be done to characterize it more completely. For decades, the presence of sexual reproduction was unknown. However, recent (2000s) molecular evidence of recombination and the observation of sexual fusions of gametes to form zygotes suggest that sexual reproduction occurs.

↑ Return to Menu

Green alga in the context of Prasiola crispa

Prasiola crispa is a small terrestrial green alga. It has been recorded world-wide mostly from cold-temperate to polar regions.

↑ Return to Menu

Green alga in the context of Foliose

A foliose lichen is a lichen with flat, leaf-like lobes, which are generally not firmly bonded to the substrate on which it grows. It is one of the three most common growth forms of lichens. It typically has distinct upper and lower surfaces, each of which is usually covered with a cortex; some, however, lack a lower cortex. The photobiont layer lies just below the upper cortex. Where present, the lower cortex is usually dark (sometimes even black), but occasionally white. Foliose lichens are attached to their substrate either by hyphae extending from the cortex or medulla, or by root-like structures called rhizines. The latter, which are found only in foliose lichens, come in a variety of shapes, the specifics of which can aid in species identification. Some foliose lichens attach only at a single stout peg called a holdfast, typically located near the lichen's centre. Lichens with this structure are called "umbilicate". In general, medium to large epiphytic foliose lichens are moderately sensitive to air pollution, while smaller or ground-dwelling foliose lichens are more tolerant. The term "foliose" derives from the Latin word foliosus, meaning "leafy".

↑ Return to Menu

Green alga in the context of Plant reproductive morphology

Plant reproductive morphology is the study of the physical form and structure (the morphology) of those parts of plants directly or indirectly concerned with sexual reproduction.

Among all living organisms, flowers, which are the reproductive structures of flowering plants (angiosperms), are the most varied physically and show a correspondingly great diversity in methods of reproduction. Plants that are not flowering plants (green algae, mosses, liverworts, hornworts, ferns and gymnosperms such as conifers) also have complex interplays between morphological adaptation and environmental factors in their sexual reproduction.

↑ Return to Menu

Green alga in the context of Sporopollenin

Sporopollenin is a biological polymer found as a major component of the tough outer (exine) walls of plant spores and pollen grains. It is chemically very stable and has been described as the "toughest material in the plant kingdom". It is well preserved in soils and sediments and with it surviving in spores from the mid‐Ordovician (475 million years ago) providing the earliest evidence of plant life on land.

The exine layer is often intricately sculptured in species-specific patterns, allowing material recovered from (for example) lake sediments to provide useful information to palynologists about past plant and fungal populations. Sporopollenin has found uses in the field of paleoclimatology as well as a marker of past ultraviolet (UVB) levels in the sunlight. Sporopollenin is also found in the cell walls of several taxa of green alga, including Phycopeltis (an ulvophycean) and Chlorella.

↑ Return to Menu

Green alga in the context of Zygnematales

The Zygnematales (Greek: ζυγός (zygós) and νῆμα (nḗma) (nom.), νήματος (nḗmatos) (gen.)), also called the Conjugatales, are an order of green algae, comprising several thousand different species in two families. The larger family Zygnemataceae, with well-known genera such as Zygnema and Spirogyra, includes members that grow as unbranched filaments, which grow longer through normal cell division. This group includes the desmids. Most members of both families live in freshwater, and form an important component of the algal scum that grows on or near plants and rocks.

Systematically they fall within the division Charophyta/Streptophyta, in which the land plants (Embryophyta) emerged.

↑ Return to Menu