Graphics hardware in the context of Reference Rasterizer


Graphics hardware in the context of Reference Rasterizer

Graphics hardware Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Graphics hardware in the context of "Reference Rasterizer"


⭐ Core Definition: Graphics hardware

Graphics hardware is computer hardware that generates computer graphics and allows them to be shown on a display, usually using a graphics card (video card) in combination with a device driver to create the images on the screen.

↓ Menu
HINT:

👉 Graphics hardware in the context of Reference Rasterizer

Software rendering is the process of generating an image from a model by means of computer software. In the context of computer graphics rendering, software rendering refers to a rendering process that is not dependent upon graphics hardware ASICs, such as a graphics card. The rendering takes place entirely in the CPU. Rendering everything with the (general-purpose) CPU has the main advantage that it eliminates the need of a graphics card for rendering, but the disadvantage is that a CPU is not designed specifically for graphics rendering in the way a graphics card is which leads to slower rendering times.

Rendering is used in architecture, simulators, video games, movies and television visual effects and design visualization. Rendering is the last step in an animation process, and gives the final appearance to the models and animation with visual effects such as shading, texture-mapping, shadows, reflections and motion blur. Rendering can be split into two main categories: real-time rendering (also known as online rendering), and pre-rendering (also called offline rendering). Real-time rendering is used to interactively render a scene, like in 3D computer games, and generally each frame must be rendered in a few milliseconds. Offline rendering is used to create realistic images and movies, where each frame can take hours or days to complete, or for debugging of complex graphics code by programmers.

↓ Explore More Topics
In this Dossier

Graphics hardware in the context of Computer graphics

Computer graphics deals with generating images and art with the aid of computers. Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

Computer graphics is responsible for displaying art and image data effectively and meaningfully to the consumer. It is also used for processing image data received from the physical world, such as photo and video content. Computer graphics development has had a significant impact on many types of media and has revolutionized animation, movies, advertising, and video games in general.

View the full Wikipedia page for Computer graphics
↑ Return to Menu

Graphics hardware in the context of Video game graphics

A variety of computer graphic techniques have been used to display video game content throughout the history of video games. The predominance of individual techniques have evolved over time, primarily due to hardware advances and restrictions such as the processing power of central or graphics processing units.

View the full Wikipedia page for Video game graphics
↑ Return to Menu

Graphics hardware in the context of Stencil buffer

A stencil buffer is an extra data buffer, in addition to the color buffer and Z-buffer, found on modern graphics hardware. The buffer is per pixel and works on integer values, usually with a depth of one byte per pixel. The Z-buffer and stencil buffer often share the same area in the RAM of the graphics hardware.

In the simplest case, the stencil buffer is used to limit the area of rendering (stenciling). More advanced usage of the stencil buffer makes use of the strong connection between the Z-buffer and the stencil buffer in the rendering pipeline. For example, stencil values can be automatically increased/decreased for every pixel that fails or passes the depth test.

View the full Wikipedia page for Stencil buffer
↑ Return to Menu