Graph traversal in the context of A* search algorithm


Graph traversal in the context of A* search algorithm

Graph traversal Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Graph traversal in the context of "A* search algorithm"


HINT:

👉 Graph traversal in the context of A* search algorithm

A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.

One major practical drawback is its space complexity where d is the depth of the shallowest solution (the length of the shortest path from the source node to any given goal node) and b is the branching factor (the maximum number of successors for any given state), as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms that can pre-process the graph to attain better performance, as well as by memory-bounded approaches; however, A* is still the best solution in many cases.

↓ Explore More Topics
In this Dossier

Graph traversal in the context of Tree traversal

In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited. The following algorithms are described for a binary tree, but they may be generalized to other trees as well.

View the full Wikipedia page for Tree traversal
↑ Return to Menu

Graph traversal in the context of Graph database

A graph database (GDB) is a database that uses graph structures for semantic queries with nodes, edges, and properties to represent and store data. A key concept of the system is the graph (or edge or relationship). The graph relates the data items in the store to a collection of nodes and edges, the edges representing the relationships between the nodes. The relationships allow data in the store to be linked together directly and, in many cases, retrieved with one operation. Graph databases hold the relationships between data as a priority. Querying relationships is fast because they are perpetually stored in the database. Relationships can be intuitively visualized using graph databases, making them useful for heavily inter-connected data.

Graph databases are commonly referred to as a NoSQL database. Graph databases are similar to 1970s network model databases in that both represent general graphs, but network-model databases operate at a lower level of abstraction and lack easy traversal over a chain of edges.

View the full Wikipedia page for Graph database
↑ Return to Menu