Gonggong (dwarf planet) in the context of "Orbital resonance"

Play Trivia Questions online!

or

Skip to study material about Gonggong (dwarf planet) in the context of "Orbital resonance"

Ad spacer

⭐ Core Definition: Gonggong (dwarf planet)

Gonggong (minor-planet designation: 225088 Gonggong) is a dwarf planet and a member of the scattered disc beyond Neptune. It has a highly eccentric and inclined orbit during which it ranges from 33–101 astronomical units (4.9–15.1 billion kilometers; 3.1–9.4 billion miles) from the Sun. As of 2019, its distance from the Sun is 88 AU (13.2×10^ km; 8.2×10^ mi), and it is the sixth-farthest known Solar System object. According to the Deep Ecliptic Survey, Gonggong is in a 3:10 orbital resonance with Neptune, in which it completes three orbits around the Sun for every ten orbits completed by Neptune. Gonggong was discovered in July 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory, and the discovery was announced in January 2009.

At approximately 1,230 km (760 mi) in diameter, Gonggong is similar in size to Pluto's moon Charon, making it the fifth-largest known trans-Neptunian object (apart possibly from Charon). It may be sufficiently massive to be in hydrostatic equilibrium and therefore a dwarf planet. Gonggong's large mass makes retention of a tenuous atmosphere of methane just possible, though such an atmosphere would slowly escape into space. The object is named after Gònggōng, a Chinese water god responsible for chaos, floods and the tilt of the Earth. The name was chosen by its discoverers in 2019, when they hosted an online poll for the general public to help choose a name for the object, and the name Gonggong won.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Gonggong (dwarf planet) in the context of Natural satellite

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

In the Solar System, there are six planetary satellite systems, altogether comprising 419 natural satellites with confirmed orbits. Seven objects commonly considered dwarf planets by astronomers are also known to have natural satellites: Orcus, Pluto, Haumea, Quaoar, Makemake, Gonggong, and Eris. As of January 2022, there are 447 other minor planets known to have natural satellites.

↑ Return to Menu

Gonggong (dwarf planet) in the context of Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies'".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, Quaoar, Orcus, Sedna, Gonggong and Eris and others that may turn out to be dwarf planets.

↑ Return to Menu

Gonggong (dwarf planet) in the context of Charon (moon)

Charon (/ˈkɛərɒn, -ən/ KAIR-on, -⁠ən or /ˈʃærən/ SHARR-ən), formal designation (134340) Pluto I, is the largest of the five known natural satellites of the dwarf planet Pluto. It has a mean radius of 606 km (377 mi). Charon is the sixth-largest known trans-Neptunian object after Pluto, Eris, Haumea, Makemake, and Gonggong. It was discovered in 1978 at the United States Naval Observatory in Washington, D.C., using photographic plates taken at the United States Naval Observatory Flagstaff Station (NOFS).

With half the diameter and one-eighth the mass of Pluto, Charon is a very large moon in comparison to its parent body. Its gravitational influence is such that the barycenter of the Plutonian system lies outside Pluto, and the two bodies are tidally locked to each other. The dwarf planet systems Pluto–Charon and Eris–Dysnomia and the dwarf planet candidate system Salacia-Actaea are the only known examples of mutual tidal locking in the Solar System, though it is likely that OrcusVanth is another.

↑ Return to Menu

Gonggong (dwarf planet) in the context of List of possible dwarf planets

The number of dwarf planets in the Solar System is unknown. Estimates have run as high as 200 in the Kuiper belt and over 10,000 in the region beyond.However, consideration of the surprisingly low densities of many large trans-Neptunian objects, as well as spectroscopic analysis of their surfaces, suggests that the number of dwarf planets may be much lower, perhaps only nine among bodies known so far. The International Astronomical Union (IAU) defines dwarf planets as being in hydrostatic equilibrium, and notes six bodies in particular: Ceres in the inner Solar System and five in the trans-Neptunian region: Pluto, Eris, Haumea, Makemake, and Quaoar. Only Pluto and Ceres have been confirmed to be in hydrostatic equilibrium, due to the results of the New Horizons and Dawn missions. Eris is generally assumed to be a dwarf planet because it is similar in size to Pluto and even more massive. Haumea and Makemake were accepted as dwarf planets by the IAU for naming purposes and will keep their names if it turns out they are not dwarf planets. Smaller trans-Neptunian objects have been called dwarf planets if they appear to be solid bodies, which is a prerequisite for hydrostatic equilibrium: planetologists generally include at least Gonggong, Orcus, and Sedna. Quaoar was labelled as a dwarf planet in a 2022–2023 annual report, though it does not appear to be in hydrostatic equilibrium. In practice the requirement for hydrostatic equilibrium is often loosened to include all gravitationally rounded objects, even by the IAU, as otherwise Mercury would not be a planet.

↑ Return to Menu

Gonggong (dwarf planet) in the context of Solar System object

The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more.

↑ Return to Menu