Glycosidic bond in the context of "Polysaccharide"

Play Trivia Questions online!

or

Skip to study material about Glycosidic bond in the context of "Polysaccharide"

Ad spacer

⭐ Core Definition: Glycosidic bond

A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

A glycosidic bond is formed between the hemiacetal or hemiketal group of a saccharide (or a molecule derived from a saccharide) and the hydroxyl group of some compound such as an alcohol. A substance containing a glycosidic bond is a glycoside.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Glycosidic bond in the context of Polysaccharide

Polysaccharides (/ˌpɒliˈsækərd/; from Ancient Greek πολύς (polús) 'many, much' and σάκχαρ (sákkhar) 'sugar') are "Compounds consisting of a large number of monosaccharides linked glycosidically". They are the most abundant carbohydrates in food. Their structures range from linear to highly branched polymers. Examples include storage polysaccharides such as starch, glycogen, and galactogen and structural polysaccharides such as hemicellulose and chitin. The term "glycan" is synonymous with polysaccharide, but often glycans are discussed in the context of glycoconjugates, i.e. hybrids of polysaccharides and proteins or lipids.

Polysaccharides are often heterogeneous, containing slight modifications of the repeating unit. They may be amorphous (e.g. starch) or insoluble in water (e.g. cellulose).

↓ Explore More Topics
In this Dossier

Glycosidic bond in the context of Cellulose

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the cell walls of green plants, many forms of algae, and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fibre is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

Cellulose is used mainly to produce paperboard and paper. Smaller quantities are converted into a wide variety of derivative products such as cellophane and rayon. Conversion of cellulose from energy crops into biofuels such as cellulosic ethanol is under development as a renewable fuel source. Cellulose for industrial use is mainly obtained from wood pulp and cotton. In addition, cellulose exhibits pronounced susceptibility to direct interactions with certain organic liquids, notably formamide, DMSO, and short-chain amines (methylamine, ethylamine), among other, are recognized as highly effective swelling agents.

↑ Return to Menu

Glycosidic bond in the context of Sugar

Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or double sugars, are molecules made of two bonded monosaccharides; common examples are sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (two molecules of glucose). White sugar is almost pure sucrose. During digestion, compound sugars are hydrolysed into simple sugars.

Longer chains of saccharides are not regarded as sugars, and are called oligosaccharides or polysaccharides. Starch is a glucose polymer found in plants – the most abundant source of energy in human food. Some other chemical substances, such as ethylene glycol, glycerol and sugar alcohols, may have a sweet taste, but are not classified as sugar.

↑ Return to Menu

Glycosidic bond in the context of Starch

Starch or amylum is a polymeric carbohydrate consisting of numerous glucose units joined by glycosidic bonds. This polysaccharide is produced by most green plants for energy storage. Worldwide, it is the most common carbohydrate in human diets, and is contained in large amounts in staple foods such as wheat, potatoes, maize (corn), rice, and cassava (manioc).

Pure starch is a white, tasteless and odorless powder that is insoluble in cold water or alcohol. It consists of two types of molecules: the linear and helical amylose and the branched amylopectin. Depending on the plant, starch generally contains 20 to 25% amylose and 75 to 80% amylopectin by weight. Glycogen, the energy reserve of animals, is a more highly branched version of amylopectin.

↑ Return to Menu

Glycosidic bond in the context of Cyanogenic glycoside

In chemistry, a glycoside /ˈɡlkəsd/ is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

In formal terms, a glycoside is any molecule in which a sugar group is bonded through its anomeric carbon to another group via a glycosidic bond. Glycosides can be linked by an O- (an O-glycoside), N- (a glycosylamine), S-(a thioglycoside), or C- (a C-glycoside) glycosidic bond. According to the IUPAC, the name "C-glycoside" is a misnomer; the preferred term is "C-glycosyl compound". The given definition is the one used by IUPAC, which recommends the Haworth projection to correctly assign stereochemical configurations.

↑ Return to Menu

Glycosidic bond in the context of Maltose

Maltose (/ˈmɔːlts/ or /ˈmɔːltz/), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt. Unlike sucrose, it is a reducing sugar.

↑ Return to Menu

Glycosidic bond in the context of Cytidine

Cytidine (symbol C or Cyd) is a nucleoside molecule that is formed when cytosine is attached to a ribose ring (also known as a ribofuranose) via a β-N1-glycosidic bond. Cytidine is a component of RNA. It is a white water-soluble solid that is only slightly soluble in ethanol.

↑ Return to Menu