Global warming in the context of Coal


Global warming in the context of Coal

Global warming Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Global warming in the context of "Coal"


⭐ Core Definition: Global warming

Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The modern-day rise in global temperatures is driven by human activities, especially fossil fuel (coal, oil and natural gas) burning since the Industrial Revolution. Fossil fuel use, deforestation, and some agricultural and industrial practices release greenhouse gases. These gases absorb some of the heat that the Earth radiates after it warms from sunlight, warming the lower atmosphere. Carbon dioxide, the primary gas driving global warming, has increased in concentration by about 50% since the pre-industrial era to levels not seen for millions of years.

Climate change has an increasingly large impact on the environment. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline. Higher temperatures are also causing more intense storms, droughts, and other weather extremes. Rapid environmental change in mountains, coral reefs, and the Arctic is forcing many species to relocate or become extinct. Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating, ocean acidification and sea level rise.

↓ Menu
HINT:

In this Dossier

Global warming in the context of Human impact on the environment

Human impact on the environment (or anthropogenic environmental impact) refers to changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused directly or indirectly by humans. Modifying the environment to fit the needs of society (as in the built environment) is causing severe effects including global warming, environmental degradation (such as ocean acidification), mass extinction and biodiversity loss, ecological crisis, and ecological collapse. Some human activities that cause damage (either directly or indirectly) to the environment on a global scale include population growth, neoliberal economic policies and rapid economic growth, overconsumption, overexploitation, pollution, and deforestation. Some of the problems, including global warming and biodiversity loss, have been proposed as representing catastrophic risks to the survival of the human species.

The term anthropogenic designates an effect or object resulting from human activity. The term was first used in the technical sense by Russian geologist Alexey Pavlov, and it was first used in English by British ecologist Arthur Tansley in reference to human influences on climax plant communities. The atmospheric scientist Paul Crutzen introduced the term "Anthropocene" in the mid-1970s. The term is sometimes used in the context of pollution produced from human activity since the start of the Agricultural Revolution but also applies broadly to all major human impacts on the environment. Many of the actions taken by humans that contribute to a heated environment stem from the burning of fossil fuel from a variety of sources, such as electricity, cars, planes, space heating, manufacturing, or the destruction of forests.

View the full Wikipedia page for Human impact on the environment
↑ Return to Menu

Global warming in the context of Earth's energy budget

Earth's energy budget (or Earth's energy balance) is the balance between the energy that Earth receives from the Sun and the energy the Earth loses back into outer space. Smaller energy sources, such as Earth's internal heat, are taken into consideration, but make a tiny contribution compared to solar energy. The energy budget also takes into account how energy moves through the climate system. The Sun heats the equatorial tropics more than the polar regions. Therefore, the amount of solar irradiance received by a certain region is unevenly distributed. As the energy seeks equilibrium across the planet, it drives interactions in Earth's climate system, i.e., Earth's water, ice, atmosphere, rocky crust, and all living things. The result is Earth's climate.

Earth's energy budget depends on many factors, such as atmospheric aerosols, greenhouse gases, surface albedo, clouds, and land use patterns. When the incoming and outgoing energy fluxes are in balance, Earth is in radiative equilibrium and the climate system will be relatively stable. Global warming occurs when earth receives more energy than it gives back to space, and global cooling takes place when the outgoing energy is greater.

View the full Wikipedia page for Earth's energy budget
↑ Return to Menu

Global warming in the context of Interdisciplinarity

Interdisciplinarity or interdisciplinary studies involves the combination of multiple academic disciplines into one activity (e.g., a research project). It draws knowledge from several fields such as sociology, anthropology, psychology, economics, etc. It is related to an interdiscipline or an interdisciplinary field, which is an organizational unit that crosses traditional boundaries between academic disciplines or schools of thought, as new needs and professions emerge. Large engineering teams are usually interdisciplinary, as a power station or mobile phone or other project requires the melding of several specialties. However, the term "interdisciplinary" is sometimes confined to academic settings.

The term interdisciplinary is applied within education and training pedagogies to describe studies that use methods and insights of several established disciplines or traditional fields of study. Interdisciplinarity involves researchers, students, and teachers in the goals of connecting and integrating several academic schools of thought, professions, or technologies—along with their specific perspectives—in the pursuit of a common task. The epidemiology of HIV/AIDS or global warming requires understanding of diverse disciplines to solve complex problems. Interdisciplinary may be applied where the subject is felt to have been neglected or even misrepresented in the traditional disciplinary structure of research institutions, for example, women's studies or ethnic area studies. Interdisciplinarity can likewise be applied to complex subjects that can only be understood by combining the perspectives of two or more fields.

View the full Wikipedia page for Interdisciplinarity
↑ Return to Menu

Global warming in the context of Arctic sea ice decline

Sea ice in the Arctic region has declined in recent decades in area and volume due to climate change. It has been melting more in summer than it refreezes in winter. Global warming, caused by greenhouse gas forcing is responsible for the decline in Arctic sea ice. The decline of sea ice in the Arctic has been accelerating during the early twenty-first century, with a decline rate of 4.7% per decade (it has declined over 50% since the first satellite records). Summertime sea ice will likely cease to exist sometime during the 21st century.

The region is at its warmest in at least 4,000 years. Furthermore, the Arctic-wide melt season has lengthened at a rate of five days per decade (from 1979 to 2013), dominated by a later autumn freeze-up. The IPCC Sixth Assessment Report (2021) stated that Arctic sea ice area will likely drop below 1 million km in at least some Septembers before 2050. In September 2020, the US National Snow and Ice Data Center reported that the Arctic sea ice in 2020 had melted to an extent of 3.74 million km, its second-smallest extent since records began in 1979. Earth lost 28 trillion tonnes of ice between 1994 and 2017, with Arctic sea ice accounting for 7.6 trillion tonnes of this loss. The rate of ice loss has risen by 57% since the 1990s.

View the full Wikipedia page for Arctic sea ice decline
↑ Return to Menu

Global warming in the context of Greenhouse effect

The greenhouse effect occurs when heat-trapping gases in a planet's atmosphere prevent the planet from losing heat to space, raising its surface temperature. Surface heating can happen from an internal heat source (as in the case of Jupiter) or come from an external source, such as a host star. In the case of Earth, the Sun emits shortwave radiation (sunlight) that passes through greenhouse gases to heat the Earth's surface. In response, the Earth's surface emits longwave radiation that is mostly absorbed by greenhouse gases, reducing the rate at which the Earth can cool off.

Without the greenhouse effect, the Earth's average surface temperature would be as cold as −18 °C (−0.4 °F). This is of course much less than the 20th century average of about 14 °C (57 °F). In addition to naturally present greenhouse gases, burning of fossil fuels has increased amounts of carbon dioxide and methane in the atmosphere. As a result, global warming of about 1.2 °C (2.2 °F) has occurred since the Industrial Revolution, with the global average surface temperature increasing at a rate of 0.18 °C (0.32 °F) per decade since 1981.

View the full Wikipedia page for Greenhouse effect
↑ Return to Menu

Global warming in the context of Pre-industrial society

Pre-industrial society refers to social attributes and forms of political and cultural organization that were prevalent before the advent of the Industrial Revolution, which occurred from 1750 to 1850. Pre-industrial refers to a time before there were machines and tools to help perform tasks en masse. Pre-industrial civilization dates back to centuries ago, but the main era known as the pre-industrial society occurred right before the industrial society. Pre-Industrial societies vary from region to region depending on the culture of a given area or history of social and political life. Europe was known for its feudal system and the Italian Renaissance.

The term "pre-industrial" is also used as a benchmark for environmental conditions before the development of industrial society: for example, theParis Agreement, adopted in Paris on 12 December, 2015 and in force from 4 November, 2016, "aims to limit global warming to well below 2, preferably to 1.5 degrees celsius, compared to pre-industrial levels." The date for the end of the "pre-industrial era" is not defined.

View the full Wikipedia page for Pre-industrial society
↑ Return to Menu

Global warming in the context of Polar amplification

Polar amplification is the phenomenon that any change in the net radiation balance (for example greenhouse intensification) tends to produce a larger change in temperature near the poles than in the planetary average. This is commonly referred to as the ratio of polar warming to tropical warming. On a planet with an atmosphere that can restrict emission of longwave radiation to space (a greenhouse effect), surface temperatures will be warmer than a simple planetary equilibrium temperature calculation would predict. Where the atmosphere or an extensive ocean is able to transport heat polewards, the poles will be warmer and equatorial regions cooler than their local net radiation balances would predict. The poles will experience the most cooling when the global-mean temperature is lower relative to a reference climate; alternatively, the poles will experience the greatest warming when the global-mean temperature is higher.

In the extreme, the planet Venus is thought to have experienced a very large increase in greenhouse effect over its lifetime, so much so that its poles have warmed sufficiently to render its surface temperature effectively isothermal (no difference between poles and equator). On Earth, water vapor and trace gasses provide a lesser greenhouse effect, and the atmosphere and extensive oceans provide efficient poleward heat transport. Both palaeoclimate changes and recent global warming changes have exhibited strong polar amplification, as described below.

View the full Wikipedia page for Polar amplification
↑ Return to Menu

Global warming in the context of Pastoralism

Pastoralism is a form of animal husbandry where domesticated animals (known as "livestock") are released onto large vegetated outdoor lands (pastures) for grazing, historically by nomadic people who moved around with their herds. The animal species involved include cattle, camels, goats, yaks, llamas, reindeer, horses, and sheep.

Pastoralism occurs in many variations throughout the world, generally where environmentally effected characteristics such as aridity, poor soils, cold or hot temperatures, and lack of water make crop-growing difficult or impossible. Operating in more extreme environments with more marginal lands means that pastoral communities are very vulnerable to the effects of global warming.

View the full Wikipedia page for Pastoralism
↑ Return to Menu

Global warming in the context of Evangelical environmentalism

Evangelical environmentalism is an environmental movement in which some Evangelical Christian organizations have emphasized biblical mandates concerning humanity's role as steward and subsequent responsibility for the care taking of Creation. While the movement has focused on different environmental issues, it is best known for its focus of addressing climate action from a biblically-grounded theological perspective.

Some Evangelical groups have allied with environmentalists in teaching knowledge and developing awareness of global warming.

View the full Wikipedia page for Evangelical environmentalism
↑ Return to Menu

Global warming in the context of Ecological resilience

In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and subsequently recovering. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. When such thresholds are associated with a critical or bifurcation point, these regime shifts may also be referred to as critical transitions.

Human activities that adversely affect ecological resilience such as reduction of biodiversity, exploitation of natural resources, pollution, land use, and anthropogenic climate change are increasingly causing regime shifts in ecosystems, often to less desirable and degraded conditions. Interdisciplinary discourse on resilience now includes consideration of the interactions of humans and ecosystems via socio-ecological systems, and the need for shift from the maximum sustainable yield paradigm to environmental resource management and ecosystem management, which aim to build ecological resilience through "resilience analysis, adaptive resource management, and adaptive governance". Ecological resilience has inspired other fields and continues to challenge the way they interpret resilience, e.g. supply chain resilience.

View the full Wikipedia page for Ecological resilience
↑ Return to Menu

Global warming in the context of Top contributors to greenhouse gas emissions

This article is a list of locations and entities by greenhouse gas emissions, i.e. the greenhouse gas emissions from companies, activities, and countries on Earth which cause climate change. The relevant greenhouse gases are mainly: carbon dioxide, methane, nitrous oxide and the fluorinated gases bromofluorocarbon, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, nitrogen trifluoride, perfluorocarbons and sulfur hexafluoride.

The extraction and subsequent use of fossil fuels coal, oil and natural gas, as a fuel source, is the largest contributor to global warming.

View the full Wikipedia page for Top contributors to greenhouse gas emissions
↑ Return to Menu

Global warming in the context of Hydrofluorocarbons

Hydrofluorocarbons (HFCs) are synthetic organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure. They are frequently used in air conditioning and as refrigerants; R-134a (1,1,1,2-tetrafluoroethane) is one of the most commonly used HFC refrigerants. In order to aid the recovery of the stratospheric ozone layer, HFCs were adopted to replace the more potent chlorofluorocarbons (CFCs) such as R-12, which were phased out from use by the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs) such as R-21 which are presently being phased out. HFCs are also used in insulating foams, aerosol propellants, as solvents and for fire protection.

HFCs may not harm the ozone layer as much as the compounds they replace, but they still contribute to global warming – with some like trifluoromethane (CHF3 or R-23) having 11,700 times the warming potential of carbon dioxide. HFC atmospheric concentrations and contribution to anthropogenic greenhouse gas emissions are rapidly increasing – consumption rose from near zero in 1990 to 1.2 billion tons of carbon dioxide equivalent in 2010 – causing international concern about their radiative forcing.

View the full Wikipedia page for Hydrofluorocarbons
↑ Return to Menu

Global warming in the context of Tipping points in the climate system

In climate science, a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system. If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming. Tipping behavior is found across the climate system, for example in ice sheets, mountain glaciers, circulation patterns in the ocean, in ecosystems, and the atmosphere. Examples of tipping points include thawing permafrost, which will release methane, a powerful greenhouse gas, or melting ice sheets and glaciers reducing Earth's albedo, which would warm the planet faster. Thawing permafrost is a threat multiplier because it holds roughly twice as much carbon as the amount currently circulating in the atmosphere.

Tipping points are often, but not necessarily, abrupt. For example, with average global warming somewhere between 0.8 °C (1.4 °F) and 3 °C (5.4 °F), the Greenland ice sheet passes a tipping point and is doomed, but its melt would take place over millennia. Tipping points are possible at today's global warming of just over 1 °C (1.8 °F) above preindustrial times, and highly probable above 2 °C (3.6 °F) of global warming. It is possible that some tipping points are close to being crossed or have already been crossed, like those of the West Antarctic and Greenland ice sheets, the Amazon rainforest and warm-water coral reefs. A 2022 study published in Science found that exceeding 1.5 °C of global warming could trigger multiple tipping points, including the collapse of major ice sheets, abrupt thawing of permafrost, and coral reef die-off, with potential for cascading system effects.

View the full Wikipedia page for Tipping points in the climate system
↑ Return to Menu

Global warming in the context of Ground-level ozone

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere.

Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although ground-level ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is a greenhouse gas, and as such contribute to global warming. It is the third most important greenhouse gas after CO2 and CH4, as indicated by estimates of its radiative forcing.

View the full Wikipedia page for Ground-level ozone
↑ Return to Menu

Global warming in the context of Methane clathrate

Methane clathrate (CH4·5.75H2O) or (4CH4·23H2O), also called methane hydrate, hydromethane, methane ice, fire ice, natural gas hydrate, or gas hydrate, is a solid clathrate compound (more specifically, a clathrate hydrate) in which a large amount of methane is trapped within a crystal structure of water, forming a solid similar to ice. Originally thought to occur only in the outer regions of the Solar System, where temperatures are low and water ice is common, significant deposits of methane clathrate have been found under sediments on the ocean floors of the Earth (around 1100 m below the sea level). Methane hydrate is formed when hydrogen-bonded water and methane gas come into contact at high pressures and low temperatures in oceans.

Methane clathrates are common constituents of the shallow marine geosphere and they occur in deep sedimentary structures and form outcrops on the ocean floor. Methane hydrates are believed to form by the precipitation or crystallisation of methane migrating from deep along geological faults. Precipitation occurs when the methane comes in contact with water within the sea bed subject to temperature and pressure. In 2008, research on Antarctic Vostok Station and EPICA Dome C ice cores revealed that methane clathrates were also present in deep Antarctic ice cores and record a history of atmospheric methane concentrations, dating to 800,000 years ago. The ice-core methane clathrate record is a primary source of data for global warming research, along with oxygen and carbon dioxide.

View the full Wikipedia page for Methane clathrate
↑ Return to Menu