Glial cells in the context of "Glutamate transporter"

Play Trivia Questions online!

or

Skip to study material about Glial cells in the context of "Glutamate transporter"

Ad spacer

⭐ Core Definition: Glial cells

Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce electrical impulses. The neuroglia make up more than one half the volume of neural tissue in the human body. They contribute to the maintenance of homeostasis, help form myelin, and provide support and protection for neurons. In the central nervous system, glial cells include oligodendrocytes (that produce myelin), astrocytes, ependymal cells and microglia, and in the peripheral nervous system they include Schwann cells (that produce myelin), and satellite cells.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Glial cells in the context of Glutamate transporter

Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family. In the brain, EAATs remove glutamate from the synaptic cleft and extrasynaptic sites via glutamate reuptake into glial cells and neurons, while VGLUTs move glutamate from the cell cytoplasm into synaptic vesicles. Glutamate transporters also transport aspartate and are present in virtually all peripheral tissues, including the heart, liver, testes, and bone. They exhibit stereoselectivity for L-glutamate but transport both L-aspartate and D-aspartate.

The EAATs are membrane-bound secondary transporters that superficially resemble ion channels. These transporters play the important role of regulating concentrations of glutamate in the extracellular space by transporting it along with other ions across cellular membranes. After glutamate is released as the result of an action potential, glutamate transporters quickly remove it from the extracellular space to keep its levels low, thereby terminating the synaptic transmission.

↓ Explore More Topics
In this Dossier

Glial cells in the context of Glomerulus (olfaction)

The glomerulus (pl.: glomeruli) is a spherical structure located in the olfactory bulb of the brain where synapses form between the terminals of the olfactory nerve and the dendrites of mitral, periglomerular and tufted cells. Each glomerulus is surrounded by a heterogeneous population of juxtaglomerular neurons (that include periglomerular, short axon, and external tufted cells) and glial cells.

All glomeruli are located near the surface of the olfactory bulb. The olfactory bulb also includes a portion of the anterior olfactory nucleus, the cells of which contribute fibers to the olfactory tract. They are the initial sites for synaptic processing of odor information coming from the nose. A glomerulus is made up of a globular tangle of axons from the olfactory receptor neurons, and dendrites from the mitral and tufted cells, as well as, from cells that surround the glomerulus such as the external tufted cells, periglomerular cells, short axon cells, and astrocytes. In mammals, glomeruli typically range between 50 and 120 μm in diameter and number between 1100 and 2400 depending on the species, with roughly between 1100 and 1200 in humans. The number of glomeruli in a human decreases with age; in humans that are over 80 they are nearly absent. Each glomerulus is composed of two compartments, the olfactory nerve zone and the non-olfactory nerve zone. The olfactory nerve zone is composed of preterminals and terminals of the olfactory nerve and is where the olfactory receptor cells make synapses on their targets. The non-olfactory nerve zone is composed of the dendritic processes of intrinsic neurons and is where dendrodendritic interactions between intrinsic neurons occur.

↑ Return to Menu

Glial cells in the context of Astrocyte

Astrocytes (from Ancient Greek ἄστρον, ástron, "star" and κύτος, kútos, "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endothelial cells that form the blood–brain barrier, provision of nutrients to the nervous tissue, maintenance of extracellular ion balance, regulation of cerebral blood flow, and a role in the repair and scarring process of the brain and spinal cord following infection and traumatic injuries. The proportion of astrocytes in the brain is not well defined; depending on the counting technique used, studies have found that the astrocyte proportion varies by region and ranges from 20% to around 40% of all glia. Another study reports that astrocytes are the most numerous cell type in the brain. Astrocytes are the major source of cholesterol in the central nervous system. Apolipoprotein E transports cholesterol from astrocytes to neurons and other glial cells, regulating cell signaling in the brain. Astrocytes in humans are more than twenty times larger than in rodent brains, and make contact with more than ten times the number of synapses.

Research since the mid-1990s has shown that astrocytes propagate intercellular Ca waves over long distances in response to stimulation, and, similar to neurons, release transmitters (called gliotransmitters) in a Ca-dependent manner. Data suggest that astrocytes also signal to neurons through Ca-dependent release of glutamate. Such discoveries have made astrocytes an important area of research within the field of neuroscience.

↑ Return to Menu

Glial cells in the context of Membrane protrusion

Cellular extensions also known as cytoplasmic protrusions and cytoplasmic processes are those structures that project from different cells, in the body, or in other organisms. Many of the extensions are cytoplasmic protrusions such as the axon and dendrite of a neuron, known also as cytoplasmic processes.

Different glial cells project cytoplasmic processes. In the brain, the processes of astrocytes form terminal endfeet, foot processes that help to form protective barriers in the brain. In the kidneys specialised cells called podocytes extend processes that terminate in podocyte foot processes that cover capillaries in the nephron. End-processes may also be known as vascular footplates, and in general may exhibit a pyramidal or finger-like morphology. Mural cells such as pericytes extend processes to wrap around capillaries.

↑ Return to Menu

Glial cells in the context of Gliotransmitter

Gliotransmitters are chemicals released from glial cells that facilitate communication between glial cells and neurons. They are usually induced from Ca signaling, although recent research has questioned the role of Ca in gliotransmitters and may require a revision of the relevance of gliotransmitters in neuronal signalling in general.

While gliotransmitters can be released from any glial cell, they are primarily released from astrocytes. Astrocytes rely on gap junctions for coupling, and are star-like in shape, which allows them to come into contact with many other synapses in various regions of the brain. Their structure also makes them capable of bidirectional signaling. It is estimated that astrocytes can make contact with over 100,000 synapses, allowing them to play an essential role in synaptic transmission. While gliotransmission primarily occurs between astrocytes and neurons, gliotransmission is not limited to these two cell types. Besides the central nervous system, gliotransmission also occurs among motor nerve terminals and Schwann cells in the peripheral nervous system. Another occurrence of gliotransmission takes place between glial cells in the retina, called Müller cells, and retinal neurons.

↑ Return to Menu