Olfactory bulb mitral cell in the context of "Glomerulus (olfaction)"

Play Trivia Questions online!

or

Skip to study material about Olfactory bulb mitral cell in the context of "Glomerulus (olfaction)"

Ad spacer

⭐ Core Definition: Olfactory bulb mitral cell

Mitral cells are neurons that are part of the olfactory system. They are located in the olfactory bulb in the mammalian central nervous system. They receive information from the axons of olfactory receptor neurons, forming synapses in neuropils called glomeruli. Axons of the mitral cells transfer information to a number of areas in the brain, including the piriform cortex, entorhinal cortex, and amygdala. Mitral cells receive excitatory input from olfactory sensory neurons and external tufted cells on their primary dendrites, whereas inhibitory input arises either from granule cells onto their lateral dendrites and soma or from periglomerular cells onto their dendritic tuft. Mitral cells together with tufted cells form an obligatory relay for all olfactory information entering from the olfactory nerve. Mitral cell output is not a passive reflection of their input from the olfactory nerve. In mice, each mitral cell sends a single primary dendrite into a glomerulus receiving input from a population of olfactory sensory neurons expressing identical olfactory receptor proteins, yet the odor responsiveness of the 20-40 mitral cells connected to a single glomerulus (called sister mitral cells) is not identical to the tuning curve of the input cells, and also differs between sister mitral cells. Odorant response properties of individual neurons in an olfactory glomerular module. The exact type of processing that mitral cells perform with their inputs is still a matter of controversy. One prominent hypothesis is that mitral cells encode the strength of an olfactory input into their firing phases relative to the sniff cycle. A second hypothesis is that the olfactory bulb network acts as a dynamical system that decorrelates to differentiate between representations of highly similar odorants over time. Support for the second hypothesis comes primarily from research in zebrafish (where mitral and tufted cells cannot be distinguished).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Olfactory bulb mitral cell in the context of Glomerulus (olfaction)

The glomerulus (pl.: glomeruli) is a spherical structure located in the olfactory bulb of the brain where synapses form between the terminals of the olfactory nerve and the dendrites of mitral, periglomerular and tufted cells. Each glomerulus is surrounded by a heterogeneous population of juxtaglomerular neurons (that include periglomerular, short axon, and external tufted cells) and glial cells.

All glomeruli are located near the surface of the olfactory bulb. The olfactory bulb also includes a portion of the anterior olfactory nucleus, the cells of which contribute fibers to the olfactory tract. They are the initial sites for synaptic processing of odor information coming from the nose. A glomerulus is made up of a globular tangle of axons from the olfactory receptor neurons, and dendrites from the mitral and tufted cells, as well as, from cells that surround the glomerulus such as the external tufted cells, periglomerular cells, short axon cells, and astrocytes. In mammals, glomeruli typically range between 50 and 120 Ξm in diameter and number between 1100 and 2400 depending on the species, with roughly between 1100 and 1200 in humans. The number of glomeruli in a human decreases with age; in humans that are over 80 they are nearly absent. Each glomerulus is composed of two compartments, the olfactory nerve zone and the non-olfactory nerve zone. The olfactory nerve zone is composed of preterminals and terminals of the olfactory nerve and is where the olfactory receptor cells make synapses on their targets. The non-olfactory nerve zone is composed of the dendritic processes of intrinsic neurons and is where dendrodendritic interactions between intrinsic neurons occur.

↓ Explore More Topics
In this Dossier

Olfactory bulb mitral cell in the context of Olfactory tract

The olfactory tract (olfactory peduncle or olfactory stalk) is a bilateral bundle of afferent nerve fibers from the mitral and tufted cells of the olfactory bulb that connects to several target regions in the brain, including the piriform cortex, amygdala, and entorhinal cortex. It is a narrow white band, triangular on coronal section, the apex being directed upward.

The term olfactory tract is a misnomer, as the olfactory peduncle is actually made up of the juxtaposition of two tracts, the medial olfactory tract (giving the medial and intermediate olfactory stria) and the lateral olfactory tract (giving the lateral and intermediate olfactory stria). However, the existence of the medial olfactory tract (and consequently the medial stria) is controversial in primates (including humans).

↑ Return to Menu