Gain (electronics) in the context of Differential amplifier


Gain (electronics) in the context of Differential amplifier

Gain (electronics) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Gain (electronics) in the context of "Differential amplifier"


⭐ Core Definition: Gain (electronics)

In electronics, gain is a measure of the ability of a two-port circuit (often an amplifier) to increase the power or amplitude of a signal from the input to the output port by adding energy converted from some power supply to the signal. It is usually defined as the mean ratio of the signal amplitude or power at the output port to the amplitude or power at the input port. It is often expressed using the logarithmic decibel (dB) units ("dB gain"). A gain greater than one (greater than zero dB), that is, amplification, is the defining property of an active device or circuit, while a passive circuit will have a gain of less than one.

The term gain alone is ambiguous, and can refer to the ratio of output to input voltage (voltage gain), current (current gain) or electric power (power gain). In the field of audio and general purpose amplifiers, especially operational amplifiers, the term usually refers to voltage gain, but in radio frequency amplifiers it usually refers to power gain. Furthermore, the term gain is also applied in systems such as sensors where the input and output have different units; in such cases the gain units must be specified, as in "5 microvolts per photon" for the responsivity of a photosensor. The "gain" of a bipolar transistor normally refers to forward current transfer ratio, either hFE ("beta", the static ratio of Ic divided by Ib at some operating point), or sometimes hfe (the small-signal current gain, the slope of the graph of Ic against Ib at a point).

↓ Menu
HINT:

👉 Gain (electronics) in the context of Differential amplifier

A differential amplifier is a type of electronic amplifier that amplifies the difference between two input voltages but suppresses any voltage common to the two inputs. It is an analog circuit with two inputs and and one output , in which the output is ideally proportional to the difference between the two voltages:

where is the gain of the amplifier.

↓ Explore More Topics
In this Dossier

Gain (electronics) in the context of Amplifiers

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude (magnitude of the voltage or current) of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

An amplifier can be either a separate piece of equipment or an electrical circuit contained within another device. Amplification is fundamental to modern electronics, and amplifiers are widely used in almost all electronic equipment. Amplifiers can be categorized in different ways. One is by the frequency of the electronic signal being amplified. For example, audio amplifiers amplify signals of less than 20 kHz, radio frequency (RF) amplifiers amplify frequencies in the range between 20 kHz and 300 GHz, and servo amplifiers and instrumentation amplifiers may work with very low frequencies down to direct current. Amplifiers can also be categorized by their physical placement in the signal chain; a preamplifier may precede other signal processing stages, for example, while a power amplifier is usually used after other amplifier stages to provide enough output power for the final use of the signal. The first practical electrical device which could amplify was the triode vacuum tube, invented in 1906 by Lee de Forest, which led to the first amplifiers around 1912. Today most amplifiers use transistors.

View the full Wikipedia page for Amplifiers
↑ Return to Menu

Gain (electronics) in the context of Distortion (music)

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may be used with other instruments, such as electric bass, electric piano, synthesizer, and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. Other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, grunge and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

The effects alter the instrument sound by clipping the signal (pushing it past its maximum, which shears off the peaks and troughs of the signal waves), adding sustain and harmonic and inharmonic overtones and leading to a compressed sound that is often described as "warm" and "dirty", depending on the type and intensity of distortion used. The terms distortion and overdrive are often used interchangeably; where a distinction is made, distortion is a more extreme version of the effect than overdrive. Fuzz is a particular form of extreme distortion originally created by guitarists using faulty equipment (such as a misaligned valve (tube); see below), which has been emulated since the 1960s by a number of "fuzzbox" effects pedals.

View the full Wikipedia page for Distortion (music)
↑ Return to Menu

Gain (electronics) in the context of Electrical synapse

An electrical synapse, or gap junction, is a mechanical and electrically conductive synapse, a functional junction between two neighboring neurons. The synapse is formed at a narrow gap between the pre- and postsynaptic neurons known as a gap junction. At gap junctions, such cells approach within about 3.8 nm of each other, a much shorter distance than the 20- to 40-nanometer distance that separates cells at a chemical synapse. In many animals, electrical synapse-based systems co-exist with chemical synapses.

Compared to chemical synapses, electrical synapses conduct nerve impulses faster and provide continuous-time bidirectional coupling via linked cytoplasm. As such, the notion of signal directionality across these synapses is not always defined. They are known to produce synchronization of network activity in the brain and can create chaotic network level dynamics. In situations where a signal direction can be defined, they lack gain (unlike chemical synapses)—the signal in the postsynaptic neuron is the same or smaller than that of the originating neuron. The fundamental bases for perceiving electrical synapses comes down to the connexons that are located in the gap junction between two neurons. Electrical synapses are often found in neural systems that require the fastest possible response, such as defensive reflexes. An important characteristic of electrical synapses is that they are mostly bidirectional, allowing impulse transmission in either direction.

View the full Wikipedia page for Electrical synapse
↑ Return to Menu

Gain (electronics) in the context of Passivity (engineering)

Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use passivity to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use passivity to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term passive is ambiguous.

An electronic circuit consisting entirely of passive components is called a passive circuit, and has the same properties as a passive component.

View the full Wikipedia page for Passivity (engineering)
↑ Return to Menu

Gain (electronics) in the context of Responsivity

Responsivity is a measure of the input–output gain of a detector system. In the specific case of a photodetector, it measures the electrical output per optical input.

A photodetector's responsivity is usually expressed in units of amperes or volts per watt of incident radiant power. For a system that responds linearly to its input, there is a unique responsivity. For nonlinear systems, the responsivity is the local slope. Many common photodetectors respond linearly as a function of the incident power.

View the full Wikipedia page for Responsivity
↑ Return to Menu

Gain (electronics) in the context of Power gain

In electrical engineering, the power gain of an electrical network is the ratio of an output power to an input power. Unlike other signal gains, such as voltage and current gain, "power gain" may be ambiguous as the meaning of terms "input power" and "output power" is not always clear. Three important power gains are operating power gain, transducer power gain and available power gain. Note that all these definitions of power gains employ the use of average (as opposed to instantaneous) power quantities and therefore the term "average" is often suppressed, which can be confusing at occasions.

View the full Wikipedia page for Power gain
↑ Return to Menu

Gain (electronics) in the context of Klystron

A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian, which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators.

In a klystron, an electron beam interacts with radio waves as it passes through resonant cavities, metal boxes along the length of a tube. The electron beam first passes through a cavity to which the input signal is applied. The energy of the electron beam amplifies the signal, and the amplified signal is taken from a cavity at the other end of the tube. The output signal can be coupled back into the input cavity to make an electronic oscillator to generate radio waves. The power gain of klystrons can be high, up to 60 dB (an increase in signal power of a factor of one million), with output power up to tens of megawatts, but the bandwidth is narrow, usually a few percent although it can be up to 10% in some devices.

View the full Wikipedia page for Klystron
↑ Return to Menu

Gain (electronics) in the context of Ideal and real op-amps

An operational amplifier (often op amp or opamp) is a DC-coupled electronic amplifier with a differential input, a (usually) single-ended output voltage, and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers. The voltage-feedback opamp (the focus of this article) amplifies the voltage difference between its two inputs, while the less common current-feedback op amp amplifies the current between its two inputs.

By using negative feedback, an op amp circuit's characteristics (e.g. its gain, input and output impedance, bandwidth, and functionality) can be determined by external components and have little dependence on temperature coefficients or engineering tolerance in the op amp itself. This flexibility has made the op amp a popular building block in analog circuits.

View the full Wikipedia page for Ideal and real op-amps
↑ Return to Menu

Gain (electronics) in the context of DJ mixer

A DJ mixer is a type of audio mixing console used by disc jockeys (DJs) to control and manipulate multiple audio signals. Some DJs use the mixer to make seamless transitions from one song to another when they are playing records at a dance club. Hip hop DJs and turntablists use the DJ mixer to play record players like a musical instrument and create new sounds. DJs in the disco, house music, electronic dance music and other dance-oriented genres use the mixer to make smooth transitions between different sound recordings as they are playing. The sources are typically record turntables, compact cassettes, CDJs, or DJ software on a laptop. DJ mixers allow the DJ to use headphones to preview the next song before playing it to the audience. Most low- to mid-priced DJ mixers can only accommodate two turntables or CD players, but some mixers (such as the ones used in larger nightclubs) can accommodate up to six turntables or CD players. DJs and turntablists in hip hop music and nu metal use DJ mixers to create beats, loops and so-called scratching sound effects.

View the full Wikipedia page for DJ mixer
↑ Return to Menu

Gain (electronics) in the context of Photomultiplier tube

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 10 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

The combination of high gain, low noise, high frequency response or, equivalently, ultra-fast response, and large area of collection has maintained photomultipliers an essential place in low light level spectroscopy, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, nuclear and particle physics, astronomy, medical diagnostics including blood tests, medical imaging, motion picture film scanning (telecine), radar jamming, and high-end image scanners known as drum scanners. Elements of photomultiplier technology, when integrated differently, are the basis of night vision devices. Research that analyzes light scattering, such as the study of polymers in solution, often uses a laser and a PMT to collect the scattered light data.

View the full Wikipedia page for Photomultiplier tube
↑ Return to Menu

Gain (electronics) in the context of Operational amplifier

An operational amplifier (often op amp, op-amp, or opamp) is a DC-coupled electronic amplifier with a differential input, a (usually) single-ended output voltage, and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers. The voltage-feedback opamp (VFOA or VFA, the focus of this article) amplifies the voltage difference between its two inputs, while the less common current-feedback op amp (CFOA) amplifies the current between its two inputs.

By using negative feedback, the characteristics of an op amp application circuit (e.g., its gain, input and output impedance, bandwidth, and functionality) can be determined by external components and have little dependence on temperature coefficients or engineering tolerance in the op amp itself. This flexibility has made the op amp a popular building block in analog circuits.

View the full Wikipedia page for Operational amplifier
↑ Return to Menu

Gain (electronics) in the context of Fuzzbox

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may be used with other instruments, such as electric bass, electric piano, synthesizer, and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. Other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, grunge and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

The effects alter the instrument sound by clipping the signal (pushing it past its maximum, which shears off the peaks and troughs of the signal waves), adding sustain and harmonic and inharmonic overtones, leading to a compressed sound that is often described as "warm" and "dirty", depending on the type and intensity of distortion used. The terms distortion and overdrive are often used interchangeably; where a distinction is made, distortion is a more extreme version of the effect than overdrive. Fuzz is a particular form of extreme distortion originally created by guitarists using faulty equipment, such as a misaligned valve (tube), which has been emulated since the 1960s by a number of "fuzzbox" effects pedals.

View the full Wikipedia page for Fuzzbox
↑ Return to Menu

Gain (electronics) in the context of Photocurrent

Photocurrent is the electric current through a photosensitive device, such as a photodiode, as the result of exposure to radiant power. The photocurrent may occur as a result of the photoelectric, photoemissive, or photovoltaic effect. The photocurrent may be enhanced by internal gain caused by interaction among ions and photons under the influence of applied fields, such as occurs in an avalanche photodiode (APD).

When a suitable radiation is used, the photoelectric current is directly proportional to intensity of radiation and increases with the increase in accelerating potential till the stage is reached when photo-current becomes maximum and does not increase with further increase in accelerating potential. The highest (maximum) value of the photo-current is called saturation current. The value of retarding potential at which photo-current becomes zero is called cut-off voltage or stopping potential for the given frequency of the incident ray.

View the full Wikipedia page for Photocurrent
↑ Return to Menu