Functor in the context of Universal property


Functor in the context of Universal property

Functor Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Functor in the context of "Universal property"


HINT:

👉 Functor in the context of Universal property

In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property.

Technically, a universal property is defined in terms of categories and functors by means of a universal morphism (see § Formal definition, below). Universal morphisms can also be thought more abstractly as initial or terminal objects of a comma category (see § Connection with comma categories, below).

↓ Explore More Topics
In this Dossier

Functor in the context of Adjoint functors

In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems (i.e., constructions of objects having a certain universal property), such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

By definition, an adjunction between categories and is a pair of functors (assumed to be covariant)

View the full Wikipedia page for Adjoint functors
↑ Return to Menu

Functor in the context of Homological algebra

Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through their homology and cohomology.

View the full Wikipedia page for Homological algebra
↑ Return to Menu