Fossil water in the context of "Mining"

⭐ In the context of Mining, fossil water is considered…

Ad spacer

⭐ Core Definition: Fossil water

Fossil water, fossil groundwater, or paleowater is an ancient body of water that has been contained in some undisturbed space, typically groundwater in an aquifer, for millennia. Other types of fossil water can include subglacial lakes, such as Antarctica's Lake Vostok. UNESCO defines fossil groundwater as "water that infiltrated usually millennia ago and often under climatic conditions different from the present, and that has been stored underground since that time."

Determining the time since water infiltrated usually involves analyzing isotopic signatures. Determining "fossil" status—whether or not that particular water has occupied that particular space since the distant past—involves modeling the flow, recharge, and losses of aquifers, which can involve significant uncertainty. Some aquifers are hundreds of meters deep and underlie vast areas of land. Research techniques in the field are developing quickly and the scientific knowledge base is growing. In the cases of many aquifers, research is lacking or disputed as to the age of the water and the behavior of the water inside the aquifer.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

šŸ‘‰ Fossil water in the context of Mining

Mining is the extraction of valuable geological materials and minerals from the surface of the Earth. Mining is required to obtain most materials that cannot be grown through agricultural processes, or feasibly created artificially in a laboratory or factory. Ores recovered by mining include metals, coal, oil shale, gemstones, limestone, chalk, dimension stone, rock salt, potash, gravel, and clay. The ore must be a rock or mineral that contains a valuable constituent, can be extracted or mined and sold for profit. Mining in a wider sense includes extraction of any non-renewable resource such as petroleum, natural gas, or even water.

Modern mining processes involve prospecting for ore bodies, analysis of the profit potential of a proposed mine, extraction of the desired materials, and final reclamation or restoration of the land after the mine is closed. Mining materials are often obtained from ore bodies, lodes, veins, seams, reefs, or placer deposits. The exploitation of these deposits for raw materials is dependent on investment, labor, energy, refining, and transportation cost.

↓ Explore More Topics
In this Dossier

Fossil water in the context of Brackish water

Brackish water, sometimes termed brack water, is water occurring in a natural environment that has more salinity than freshwater, but not as much as seawater. It may result from mixing seawater (salt water) and fresh water together, as in estuaries, or it may occur in brackish fossil aquifers. The word comes from the Middle Dutch root brak. Certain human activities can produce brackish water, in particular civil engineering projects such as dikes and the flooding of coastal marshland to produce brackish water pools for freshwater prawn farming. Brackish water is also the primary waste product of the salinity gradient power process. Because brackish water is hostile to the growth of most terrestrial plant species, without appropriate management it can be damaging to the environment (see article on shrimp farms).

Technically, brackish water contains between 0.5 and 30Ā grams of salt per litre—more often expressed as 0.5 to 30 parts per thousand (‰), which is a specific gravity of between 1.0004 and 1.0226. Thus, brackish covers a range of salinity regimes and is not considered a precisely defined condition. It is characteristic of many brackish surface waters that their salinity can vary considerably over space or time. Water with a salt concentration greater than 30‰ is considered saline.

↑ Return to Menu

Fossil water in the context of Irrigation in Saudi Arabia

Center pivot irrigation in Saudi Arabia is typical of many isolated irrigation projects scattered throughout the arid and hyper-arid regions of the Earth. Nonrenewable fossil water is mined from depths as great as 1Ā km (3,000Ā ft), pumped to the surface, and distributed via large center pivot irrigation feeds. The circles of green irrigated vegetation may comprise a variety of agricultural commodities from alfalfa to wheat. Diameters of the normally circular fields range from a few hundred meters to as much as 3Ā km (1.9Ā mi).

The projects often trace out a narrow, sinuous, and seemingly random path. Actually, engineers generally seek ancient river channels now buried by the sand seas. The fossil waters mined in these projects accumulated during periods of wetter climate in the Pleistocene glacial epochs, between 10,000 and 2 million years ago, and are not being replenished under current climatic conditions. The projects, therefore, will have limited production as the reservoirs are drained.

↑ Return to Menu