Flipper (anatomy) in the context of "Bird wing"

Play Trivia Questions online!

or

Skip to study material about Flipper (anatomy) in the context of "Bird wing"

Ad spacer

⭐ Core Definition: Flipper (anatomy)

A flipper is a broad, flattened limb adapted for aquatic locomotion. It refers to the fully webbed, swimming appendages of aquatic vertebrates that are not fish.

In animals with two flippers, such as whales, the flipper refers solely to the forelimbs. In animals with four flippers, such as pinnipeds and sea turtles, one may distinguish fore- and hind-flippers, or pectoral flippers and pelvic flippers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Flipper (anatomy) in the context of Bird wing

Bird wings are paired forelimbs in birds, which evolved specialized feathers to generate lift and thrust and allow the birds to fly.

Terrestrial flightless birds have reduced wings or none at all (for example, moa). In aquatic flightless birds (penguins), wings can serve as flippers.

↓ Explore More Topics
In this Dossier

Flipper (anatomy) in the context of Pinniped

Pinnipeds (pronounced /ˈpɪnɪˌpɛdz/), commonly known as seals, are a widely distributed and diverse clade of carnivorous, fin-footed, semiaquatic, mostly marine mammals. They comprise the extant families Odobenidae (whose only living member is the walrus), Otariidae (the eared seals: sea lions and fur seals), and Phocidae (the earless seals, or true seals), with 34 extant species and more than 50 extinct species described from fossils. While seals were historically thought to have descended from two ancestral lines, molecular evidence supports them as a monophyletic group (descended from one ancestor). Pinnipeds belong to the suborder Caniformia of the order Carnivora; their closest living relatives are musteloids (weasels, raccoons, skunks and red pandas), having diverged about 50 million years ago.

Seals range in size from the 1 m (3 ft 3 in) and 45 kg (100 lb) Baikal seal to the 5 m (16 ft) and 3,200 kg (7,100 lb) southern elephant seal. Several species exhibit sexual dimorphism. They have streamlined bodies and four limbs that are modified into flippers. Though not as fast in the water as dolphins, seals are more flexible and agile. Otariids primarily use their front limbs to propel themselves through the water, while phocids and walruses primarily use their hind limbs for this purpose. Otariids and walruses have hind limbs that can be pulled under the body and used as legs on land. By comparison, terrestrial locomotion by phocids is more cumbersome. Otariids have visible external ears, while phocids and walruses lack these. Pinnipeds have well-developed senses—their eyesight and hearing are adapted for both air and water, and they have an advanced tactile system in their whiskers or vibrissae. Some species are well adapted for diving to great depths. They have a layer of fat, or blubber, under the skin to keep warm in cold water, and, other than the walrus, all species are covered in fur.

↑ Return to Menu

Flipper (anatomy) in the context of Limb (anatomy)

A limb (from Old English lim, meaning "body part") is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetically correspond to the four paired fins (pectoral and pelvic fins) of their fish (sarcopterygian) ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the pectoral/shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic and semiaquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.

↑ Return to Menu

Flipper (anatomy) in the context of Secondarily aquatic tetrapods

Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least partly aquatic. These animals are called "secondarily aquatic" because although all tetrapods descended from freshwater lobe finned fish (see evolution of tetrapods), their more recent ancestors are terrestrial vertebrates that evolved on land for hundreds of millions of years, and their clades only re-adapted to aquatic environment much later.

Unlike primarily aquatic vertebrates (i.e. fish), secondarily aquatic tetrapods (especially aquatic amniotes), while having appendages such as flippers, dorsal fin and tail fins (flukes) that resemble fish fins due to convergent evolution, still have physiology based on their terrestrial ancestry, most notably their air-breathing respiration via lungs (instead of aquatic respiration via gills) and excretion of nitrogenous waste as urea or uric acid (instead of ammonia like most fish). Nearly all extant aquatic tetrapods are secondarily aquatic, with only larval amphibians (tadpoles) being primarily aquatic with gills, and only some species of paedomorphic mole salamanders (most notably the fully aquatic axolotl) retain the gill-based physiology into adulthood.

↑ Return to Menu

Flipper (anatomy) in the context of Fish fin

Fins are moving appendages protruding from the body of fish that interact with water to generate thrust and lift, which help the fish swim. Apart from the tail or caudal fin, fish fins have no direct articulations with the axial skeleton and are attached to the core only via muscles and ligaments.

Fish fins are distinctive anatomical features with varying internal structures among different clades: in ray-finned fish (Actinopterygii), fins are mainly composed of spreading bony spines or "rays" covered by a thin stretch of scaleless skin, resembling a folding fan; in lobe-finned fish (Sarcopterygii) such as coelacanths and lungfish, fins are short rays based around a muscular central bud internally supported by a jointed appendicular skeleton; in cartilaginous fish (Chondrichthyes) and jawless fish (Agnatha), fins are fleshy "flippers" supported by a cartilaginous skeleton. The limbs of tetrapods, a mostly terrestrial clade evolved from freshwater lobe-finned fish, are homologous to the pectoral and pelvic fins of all jawed fish.

↑ Return to Menu

Flipper (anatomy) in the context of Nekton

Nekton or necton (from the Ancient Greek: νηκτόν, romanizednekton, lit.'to swim') is any aquatic organism that can actively and persistently propel itself through a water column (i.e. swim) without touching the bottom. Nekton generally have powerful tails and appendages (e.g. fins, pleopods, flippers or jets) that make them strong enough swimmers to counter ocean currents, and have mechanisms for sufficient lift and/or buoyancy to prevent sinking. Examples of extant nekton include most fish (especially pelagic fish like tuna and sharks), marine mammals (cetaceans, sirenia and pinnipeds) and reptiles (specifically sea turtles), penguins, coleoid cephalopods (squids and cuttlefish) and several species of decapod crustaceans (specifically prawns, shrimp and krill).

The term was proposed by German biologist Ernst Haeckel to differentiate between the active swimmers in a body of water, and the plankton that are passively carried along by the current. As a guideline, nektonic organisms have a high Reynolds number (greater than 1000) and planktonic organisms a low one (less than 10). Some organisms begin their life cycle as planktonic eggs and larvae, and transition to nektonic juveniles and adults later in life. This may make distinction difficult when attempting to classify certain plankton-to-nekton species as one or the other. For this reason, some biologists avoid using this term.

↑ Return to Menu

Flipper (anatomy) in the context of Baleen whale

Baleen whales (/bəˈln/), also known as whalebone whales, are marine mammals of the parvorder Mysticeti in the infraorder Cetacea (whales, dolphins and porpoises), which use baleen plates (or "whalebone") in their mouths to sieve plankton from the water. Mysticeti comprises the families Balaenidae (right and bowhead whales), Balaenopteridae (rorquals), Eschrichtiidae (the gray whale) and Cetotheriidae (the pygmy right whale). There are currently 16 species of baleen whales. While cetaceans were historically thought to have descended from mesonychians, molecular evidence instead supports them as a clade of even-toed ungulates (Artiodactyla). Baleen whales split from toothed whales (Odontoceti) around 34 million years ago.

Baleen whales range in size from the 6 m (20 ft) and 3,000 kg (6,600 lb) pygmy right whale to the 31 m (102 ft) and 190 t (210 short tons) blue whale, the largest known animal to have ever existed. They are sexually dimorphic. Baleen whales can have streamlined or large bodies, depending on the feeding behavior, and two limbs that are modified into flippers. The fin whale is the fastest baleen whale, recorded swimming at 10 m/s (36 km/h; 22 mph). Baleen whales use their baleen plates to filter out food from the water by either lunge-feeding or skim-feeding. Baleen whales have fused neck vertebrae, and are unable to turn their heads at all. Baleen whales have two blowholes. Some species are well adapted for diving to great depths. They have a layer of fat, or blubber, under the skin to keep warm in the cold water.

↑ Return to Menu

Flipper (anatomy) in the context of Homology (biology)

In biology, homology is similarity in anatomical structures or genes between organisms of different taxa due to shared ancestry, regardless of current functional differences. Evolutionary biology explains homologous structures as retained heredity from a common ancestor after having been subjected to adaptive modifications for different purposes as the result of natural selection.

The term was first applied to biology in a non-evolutionary context by the anatomist Richard Owen in 1843. Homology was later explained by Charles Darwin's theory of evolution in 1859, but had been observed before this from Aristotle's biology onwards, and it was explicitly analysed by Pierre Belon in 1555. A common example of homologous structures is the forelimbs of vertebrates, where the wings of bats and birds, the arms of primates, the front flippers of whales, and the forelegs of four-legged vertebrates like horses and crocodilians are all derived from the same ancestral tetrapod structure.

↑ Return to Menu

Flipper (anatomy) in the context of Appendicular skeleton

The appendicular skeleton is the portion of the vertebrate endoskeleton consisting of the bones, cartilages and ligaments that support the paired appendages (fins, flippers or limbs). In most terrestrial vertebrates (except snakes, legless lizards and caecillians), the appendicular skeleton and the associated skeletal muscles are the predominant locomotive structures.

There are 126 bones in the human appendicular skeleton, includes the skeletal elements within the shoulder and pelvic girdles, upper and lower limbs, and hands and feet. These bones have shared ancestry (are homologous) to those in the forelimbs and hindlimbs of all other tetrapods, which are in turn homologous to the pectoral and pelvic fins in fish.

↑ Return to Menu