Euramerica in the context of "Old Red Sandstone"

Play Trivia Questions online!

or

Skip to study material about Euramerica in the context of "Old Red Sandstone"

Ad spacer

⭐ Core Definition: Euramerica

Laurasia (/lɔːˈrʒə, -ʃiə/) was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya (beginning in the late Triassic period) during the breakup of Pangaea, drifting further north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Eurasia.

Laurentia, Avalonia, Baltica, and a series of smaller terranes, collided in the Caledonian orogeny c. 400 Mya to form Laurussia. Laurussia then collided with Gondwana to form Pangaea. Kazakhstania and Siberia were then added to Pangaea 290–300 Mya to form Laurasia. Laurasia finally became an independent continental mass when Pangaea broke up into Gondwana and Laurasia.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Euramerica in the context of Old Red Sandstone

Old Red Sandstone, abbreviated ORS, is an assemblage of rocks in the North Atlantic region largely of Devonian age. It extends in the east across Great Britain, Ireland and Norway, and in the west along the eastern seaboard of North America. It also extends northwards into Greenland and Svalbard. These areas were a part of the paleocontinent of Euramerica (Laurussia). In Britain it is a lithostratigraphic unit (a sequence of rock strata) to which stratigraphers accord supergroup status and which is of considerable importance to early paleontology. The presence of Old in the name is to distinguish the sequence from the younger New Red Sandstone which also occurs widely throughout Britain.

↓ Explore More Topics
In this Dossier

Euramerica in the context of Carboniferous rainforest collapse

The Carboniferous rainforest collapse (CRC) was a minor extinction event that occurred around 305 million years ago in the Carboniferous period. The event occurred at the end of the Moscovian and continued into the early Kasimovian stages of the Pennsylvanian (Upper Carboniferous).

It altered the vast coal forests that covered the equatorial region of Euramerica (Europe and North America). This event may have fragmented the forests into isolated refugia or ecological "islands", which in turn encouraged dwarfism and, shortly after, extinction of many plant and animal species. Following the event, coal-forming tropical forests continued in large areas of the Earth, but their extent and composition were changed.

↑ Return to Menu

Euramerica in the context of Pangaea

Pangaea or Pangea (/pænˈə/ pan-JEE) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from the earlier continental units of Gondwana, Euramerica and Siberia during the Carboniferous period approximately 335 million years ago, and began to break apart about 200 million years ago, at the end of the Triassic and beginning of the Jurassic. Pangaea was C-shaped, with the bulk of its mass stretching between Earth's northern and southern polar regions and surrounded by the superocean Panthalassa and the Paleo-Tethys and subsequent Tethys Oceans. Pangaea is the most recent supercontinent to have existed and was the first to be reconstructed by geologists.

↑ Return to Menu

Euramerica in the context of Permian

The Permian (/ˈpɜːrmi.ən/ PUR-mee-ən) is a geologic period and stratigraphic system which spans 47 million years, from the end of the Carboniferous Period 298.9 Ma (million years ago) to the beginning of the Triassic Period 251.902 Ma. It is the sixth and last period of the Paleozoic Era; the following Triassic Period belongs to the Mesozoic Era. The concept of the Permian was introduced in 1841 by geologist Sir Roderick Murchison, who named it after the region of Perm in Russia.

The Permian witnessed the diversification of the two groups of amniotes, the synapsids and the sauropsids (reptiles). The world at the time was dominated by the supercontinent Pangaea, which had formed due to the collision of Euramerica and Gondwana during the Carboniferous. Pangaea was surrounded by the superocean Panthalassa. The Carboniferous rainforest collapse left behind vast regions of desert within the continental interior. Amniotes, which could better cope with these drier conditions, rose to dominance in place of their amphibian ancestors.

↑ Return to Menu

Euramerica in the context of Hercynian Europe

The Variscan orogeny or Hercynian orogeny was a geologic mountain-building event caused by Late Paleozoic continental collision between Euramerica (Laurussia) and Gondwana to form the supercontinent of Pangaea. It remains visible today as a series of isolated massifs, including the Ardennes, Bohemian Massif, Vosges-Black Forest, Armorican Massif, Cornubian Massif, Massif Central, and Iberian System. These are interspersed with Mesozoic and Cenozoic sedimentary basins. The chain also crops out in southern Ireland and was later incorporated into the Alpine orogeny (external crystalline massifs) and Pyrenean orogeny. These ancient massifs form the pre-Permian basement of western and Central Europe, part of a larger mountain system stretching from the Ural Mountains in Russia to the Appalachian Mountains in North America.

The chain originated from the convergence and collision of three continental masses: the microcontinent Armorica and the supercontinents Protogondwana and Laurussia (a union of Laurentia and Baltica from the Caledonian orogeny). This convergence contributed to the formation of the supercontinent Pangaea.

↑ Return to Menu

Euramerica in the context of Iapetus Ocean

The Iapetus Ocean (/ˈæpɪtəs/; eye-AP-ih-təs) existed in the late Neoproterozoic and early Paleozoic eras of the geologic timescale (between 600 and 400 million years ago). It was in the Southern Hemisphere, between the paleocontinents of Laurentia, Baltica and Avalonia. The ocean disappeared with the Acadian, Caledonian and Taconic orogenies, when these three continents joined to form one big landmass called Euramerica. The "southern" Iapetus Ocean has been proposed to have closed with the Famatinian and Taconic orogenies, meaning a collision between western Gondwana and Laurentia.

Because the Iapetus Ocean was positioned between continental masses that would at a much later time roughly form the opposite shores of the Atlantic Ocean, it can be seen as a sort of precursor of the Atlantic, and the process by which it opened shares many similarities with that of the Atlantic's initial opening in the Jurassic. The Iapetus Ocean was therefore named for the titan Iapetus, who in Greek mythology was the father of Atlas, after whom the Atlantic Ocean was named.

↑ Return to Menu

Euramerica in the context of Alleghenian orogeny

The Alleghanian orogeny or Appalachian orogeny is one of the geological mountain-forming events that formed the Appalachian Mountains and Allegheny Mountains. The term and spelling Alleghany orogeny was originally proposed by H.P. Woodward in 1957.

The Alleghanian orogeny occurred approximately 325 million to 260 million years ago over at least five deformation events in the Carboniferous to Permian period. The orogeny was caused by Africa's collision with North America. At the time, these continents did not exist in their current forms: North America was part of the Euramerica super-continent, while Africa was part of Gondwana. This collision formed the super-continent Pangaea, which contained all major continental land masses. The collision provoked the orogeny: it exerted massive stress on what is today the Eastern Seaboard of North America, forming a wide and high mountain chain. Evidence for the Alleghanian orogeny stretches for many hundreds of kilometres on the surface from Alabama to New Jersey and can be traced further subsurface to the southwest. In the north, the Alleghanian deformation extends northeast to Newfoundland. Subsequent erosion wore down the mountain chain and spread sediments both to the east and to the west.

↑ Return to Menu