Equality (mathematics) in the context of Approximate


Equality (mathematics) in the context of Approximate

Equality (mathematics) Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Equality (mathematics) in the context of "Approximate"


⭐ Core Definition: Equality (mathematics)

In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. Equality between A and B is denoted with an equals sign as A = B, and read "A equals B". A written expression of equality is called an equation or identity depending on the context. Two objects that are not equal are said to be distinct.

Equality is often considered a primitive notion, meaning it is not formally defined, but rather informally said to be "a relation each thing bears to itself and nothing else". This characterization is notably circular ("nothing else"), reflecting a general conceptual difficulty in fully characterizing the concept. Basic properties about equality like reflexivity, symmetry, and transitivity have been understood intuitively since at least the ancient Greeks, but were not symbolically stated as general properties of relations until the late 19th century by Giuseppe Peano. Other properties like substitution and function application weren't formally stated until the development of symbolic logic.

↓ Menu
HINT:

In this Dossier

Equality (mathematics) in the context of Equation

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

Solving an equation containing variables consists of determining which values of the variables make the equality true. The variables for which the equation has to be solved are also called unknowns, and the values of the unknowns that satisfy the equality are called solutions of the equation. There are two kinds of equations: identities and conditional equations. An identity is true for all values of the variables. A conditional equation is only true for particular values of the variables.

View the full Wikipedia page for Equation
↑ Return to Menu

Equality (mathematics) in the context of Approximation

An approximation is anything that is intentionally similar but not exactly equal to something else.

View the full Wikipedia page for Approximation
↑ Return to Menu

Equality (mathematics) in the context of Law (mathematics)

In mathematics, a law is a formula that is always true within a given context. Laws describe a relationship, between two or more expressions or terms (which may contain variables), usually using equality or inequality, or between formulas themselves, for instance, in mathematical logic. For example, the formula is true for all real numbers a, and is therefore a law. Laws over an equality are called identities. For example, and are identities. Mathematical laws are distinguished from scientific laws which are based on observations, and try to describe or predict a range of natural phenomena. The more significant laws are often called theorems.

View the full Wikipedia page for Law (mathematics)
↑ Return to Menu

Equality (mathematics) in the context of Addition

Addition, usually denoted with the plus sign +, is one of the four basic operations of arithmetic, the other three being subtraction, multiplication, and division. The addition of two whole numbers results in the total or sum of those values combined. For example, the adjacent image shows two columns of apples, one with three apples and the other with two apples, totaling to five apples. This observation is expressed as "3 + 2 = 5", which is read as "three plus two equals five".

Besides counting items, addition can also be defined and executed without referring to concrete objects, using abstractions called numbers instead, such as integers, real numbers, and complex numbers. Addition belongs to arithmetic, a branch of mathematics. In algebra, another area of mathematics, addition can also be performed on abstract objects such as vectors, matrices, and elements of additive groups.

View the full Wikipedia page for Addition
↑ Return to Menu

Equality (mathematics) in the context of Extensionality

In logic, extensionality, or extensional equality, refers to principles that judge objects to be equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned with whether the internal definitions of objects are the same.

View the full Wikipedia page for Extensionality
↑ Return to Menu

Equality (mathematics) in the context of Transitive relation

In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c.

Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x = y and y = z then x = z.

View the full Wikipedia page for Transitive relation
↑ Return to Menu

Equality (mathematics) in the context of Reflexive relation

In mathematics, a binary relation on a set is reflexive if it relates every element of to itself.

An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

View the full Wikipedia page for Reflexive relation
↑ Return to Menu

Equality (mathematics) in the context of Logical constant

In logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.

One of the fundamental questions in the philosophy of logic is "What is a logical constant?"; that is, what special feature of certain constants makes them logical in nature?

View the full Wikipedia page for Logical constant
↑ Return to Menu

Equality (mathematics) in the context of Equals sign

The equals sign (British English) or equal sign (American English), also known as the equality sign, is the mathematical symbol =, which is used to indicate equality. In an equation it is placed between two expressions that have the same value, or for which one studies the conditions under which they have the same value.

In Unicode and ASCII it has the code point U+003D. It was invented in 1557 by the Welsh mathematician Robert Recorde.

View the full Wikipedia page for Equals sign
↑ Return to Menu

Equality (mathematics) in the context of Equation solving

In mathematics, to solve an equation is to find the solutions of an equation, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.

An equation may be solved either numerically or symbolically. Solving an equation numerically means that only numbers are admitted as solutions. Solving an equation symbolically means that expressions can be used for representing the solutions.

View the full Wikipedia page for Equation solving
↑ Return to Menu

Equality (mathematics) in the context of Identity (mathematics)

In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol instead of =, the equals sign. Formally, an identity is a universally quantified equality.

View the full Wikipedia page for Identity (mathematics)
↑ Return to Menu

Equality (mathematics) in the context of Von Neumann–Bernays–Gödel set theory

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality) and finitely many logical symbols, only finitely many axioms are needed to build the classes satisfying them. This is why NBG is finitely axiomatizable. Classes are also used for other constructions, for handling the set-theoretic paradoxes, and for stating the axiom of global choice, which is stronger than ZFC's axiom of choice.

View the full Wikipedia page for Von Neumann–Bernays–Gödel set theory
↑ Return to Menu

Equality (mathematics) in the context of Element (mathematics)

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (), one could say that "3 is an element of A", expressed notationally as .

View the full Wikipedia page for Element (mathematics)
↑ Return to Menu

Equality (mathematics) in the context of Sides of an equation

In mathematics, LHS is informal shorthand for the left-hand side of an equation. Similarly, RHS is the right-hand side. The two sides have the same value, expressed differently, since equality is symmetric.

More generally, these terms may apply to an inequation or inequality; the right-hand side is everything on the right side of a test operator in an expression, with LHS defined similarly.

View the full Wikipedia page for Sides of an equation
↑ Return to Menu