Binary relation in the context of "Reflexive relation"

Play Trivia Questions online!

or

Skip to study material about Binary relation in the context of "Reflexive relation"

Ad spacer

⭐ Core Definition: Binary relation

In mathematics, a binary relation associates some elements of one set called the domain with some elements of another set (possibly the same) called the codomain. Precisely, a binary relation over sets and is a set of ordered pairs , where is an element of and is an element of . It encodes the common concept of relation: an element is related to an element , if and only if the pair belongs to the set of ordered pairs that defines the binary relation.

An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers , in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number is related to numbers such as , , , , but not to or , just as the prime number is related to , , and , but not to or .

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Binary relation in the context of Reflexive relation

In mathematics, a binary relation on a set is reflexive if it relates every element of to itself.

An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

↓ Explore More Topics
In this Dossier

Binary relation in the context of Logical connective

In logic, a logical connective (also called a logical operator, sentential connective, or sentential operator) is an operator that combines or modifies one or more logical variables or formulas, similarly to how arithmetic connectives like and combine or negate arithmetic expressions. For instance, in the syntax of propositional logic, the binary connective (meaning "or") can be used to join the two logical formulas and , producing the complex formula .

Unlike in algebra, there are many symbols in use for each logical connective. The table "Logical connectives" shows examples.

↑ Return to Menu

Binary relation in the context of Symmetric relation

A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if:

where the notation aRb means that (a, b) ∈ R.

↑ Return to Menu

Binary relation in the context of Transitive relation

In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c.

Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x = y and y = z then x = z.

↑ Return to Menu

Binary relation in the context of Well-founded

In mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a set or, more generally, a class X if every non-empty subset (or subclass) SX has a minimal element with respect to R; that is, there exists an mS such that, for every sS, one does not have s R m. More formally, a relation is well-founded if:Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.

Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.

↑ Return to Menu

Binary relation in the context of Universal quantification

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("x", "∀(x)", or sometimes by "(x)" alone). Universal quantification is distinct from existential quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain.

↑ Return to Menu

Binary relation in the context of Bijection

In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set.

A function is bijective if it is invertible; that is, a function is bijective if and only if there is a function the inverse of f, such that each of the two ways for composing the two functions produces an identity function: for each in and for each in

↑ Return to Menu

Binary relation in the context of Order theory

Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that".

↑ Return to Menu