Enzyme Commission number in the context of Respiratory complex I


Enzyme Commission number in the context of Respiratory complex I

Enzyme Commission number Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Enzyme Commission number in the context of "Respiratory complex I"


HINT:

👉 Enzyme Commission number in the context of Respiratory complex I

Respiratory complex I, EC 7.1.1.2 (also known as NADH:ubiquinone oxidoreductase, Type I NADH dehydrogenase and mitochondrial complex I) is the first large protein complex of the respiratory chains of many organisms from bacteria to humans. It catalyzes the transfer of electrons from NADH to coenzyme Q10 (CoQ10) and translocates protons across the inner mitochondrial membrane in eukaryotes or the plasma membrane of bacteria.

This enzyme is essential for the normal functioning of cells, and mutations in its subunits lead to a wide range of inherited neuromuscular and metabolic disorders. Defects in this enzyme are responsible for the development of several pathological processes such as ischemia/reperfusion damage (stroke and cardiac infarction), Parkinson's disease and others.

↓ Explore More Topics
In this Dossier

Enzyme Commission number in the context of Lactase

Lactase (EC 3.2.1.108) is an enzyme produced by many organisms and is essential to the complete digestion of whole milk. It breaks down the sugar lactose into its component parts, galactose and glucose, simple sugars that can be absorbed into the bloodstream through an animal's intestines. A lactase is a type of β-galactosidase because it breaks down the β-glycosidic bond in D-lactose. The chemical reaction it catalyzes is:

The only human gene encoding a lactase is LCT or lactase-phlorizin hydrolase (alternative symbol LPH). LCT has a lactase domain and a phlorizin hydrolase domain. It is encoded on chromosome 2. Lactase is found in the brush border of the small intestine of humans and other mammals. People deficient in LCT or lacking functional LCT may experience the symptoms of lactose intolerance after consuming milk products.

View the full Wikipedia page for Lactase
↑ Return to Menu

Enzyme Commission number in the context of Cellulase

Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

The name is also used for any naturally occurring mixture or complex of various such enzymes, that act serially or synergistically to decompose cellulosic material.

View the full Wikipedia page for Cellulase
↑ Return to Menu

Enzyme Commission number in the context of Polymerase

In biochemistry, a polymerase is an enzyme (EC 2.7.7.6/7/19/48/49) that synthesizes long chains of polymers or nucleic acids. DNA polymerase and RNA polymerase are used to assemble DNA and RNA molecules, respectively, by copying a DNA template strand using base-pairing interactions or half ladder replication.

A DNA polymerase from the thermophilic bacterium, Thermus aquaticus (Taq) (PDB 1BGX, EC 2.7.7.7), is used in the polymerase chain reaction, an important technique of molecular biology.

View the full Wikipedia page for Polymerase
↑ Return to Menu

Enzyme Commission number in the context of Angiotensin-converting enzyme

Angiotensin-converting enzyme (EC 3.4.15.1), or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

Other lesser known functions of ACE are degradation of bradykinin, substance P and amyloid beta-protein.

View the full Wikipedia page for Angiotensin-converting enzyme
↑ Return to Menu

Enzyme Commission number in the context of Glucosidase

Glucosidases are the glycoside hydrolase enzymes categorized under the EC number 3.2.1.

View the full Wikipedia page for Glucosidase
↑ Return to Menu

Enzyme Commission number in the context of Nitrogenase

Nitrogenases are enzymes (EC 1.18.6.1EC 1.19.6.1) that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of nitrogen fixation. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the biosynthesis of molecules (nucleotides, amino acids) that create plants, animals and other organisms. They are encoded by the Nif genes or homologs. They are related to protochlorophyllide reductase.

View the full Wikipedia page for Nitrogenase
↑ Return to Menu

Enzyme Commission number in the context of Carbonic anhydrase

The carbonic anhydrases (or carbonate dehydratases) (EC 4.2.1.1) form a family of enzymes that catalyze the interconversion between carbon dioxide and water and the dissociated ions of carbonic acid (i.e. bicarbonate and hydrogen ions). The active site of most carbonic anhydrases contains a zinc ion. They are therefore classified as metalloenzymes. The enzyme maintains acid-base balance and helps transport carbon dioxide.

Carbonic anhydrase helps maintain acid–base homeostasis, regulate pH, and fluid balance. Depending on its location, the role of the enzyme changes slightly. For example, carbonic anhydrase produces acid in the stomach lining. In the kidney, the control of bicarbonate ions influences the water content of the cell. The control of bicarbonate ions also influences the water content in the eyes. Inhibitors of carbonic anhydrase are used to treat glaucoma, the excessive build-up of water in the eyes. Blocking this enzyme shifts the fluid balance in the eyes to reduce fluid build-up thereby relieving pressure.

View the full Wikipedia page for Carbonic anhydrase
↑ Return to Menu

Enzyme Commission number in the context of Glutamine synthetase

Glutamine synthetase (GS) (EC 6.3.1.2) is an enzyme that catalyzes the condensation of glutamate and ammonia to form glutamine:Glutamate + ATP + NH3 → Glutamine + ADP + phosphate

Glutamine synthetase uses ammonia produced by nitrate reduction, amino acid degradation, and photorespiration. The amide group of glutamate is a nitrogen source for the synthesis of glutamine pathway metabolites.

View the full Wikipedia page for Glutamine synthetase
↑ Return to Menu

Enzyme Commission number in the context of Firefly luciferin

Firefly luciferin (also known as beetle luciferin) is the luciferin, precursor of the light-emitting compound, used for the firefly (Lampyridae), railroad worm (Phengodidae), starworm (Rhagophthalmidae), and click-beetle (Pyrophorini) bioluminescent systems. It is the substrate of firefly luciferase (EC 1.13.12.7), which is responsible for the characteristic light emission of many firefly and other insect species in the visible spectra ranging from 530 until 630 nm.

As with other luciferins, oxygen is essential for the luminescence mechanism, which involves the decomposition of a cyclic peroxide to produce excited-state molecules capable of emitting light as they relax to the ground state. Additionally, it has been found that adenosine triphosphate (ATP) and magnesium are required for light emission.

View the full Wikipedia page for Firefly luciferin
↑ Return to Menu

Enzyme Commission number in the context of Uroporphyrinogen III decarboxylase

Uroporphyrinogen III decarboxylase (uroporphyrinogen decarboxylase, or UROD) is an enzyme (EC 4.1.1.37) that in humans is encoded by the UROD gene.

View the full Wikipedia page for Uroporphyrinogen III decarboxylase
↑ Return to Menu

Enzyme Commission number in the context of RuBisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations RuBisCo, rubisco, RuBPCase, or RuBPco, is an enzyme (EC 4.1.1.39) involved in the light-independent (or "dark") part of photosynthesis, including the carbon fixation by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. It emerged approximately four billion years ago in primordial metabolism prior to the presence of oxygen on Earth. It is probably the most abundant enzyme on Earth. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-bisphosphate (also known as RuBP).

View the full Wikipedia page for RuBisCO
↑ Return to Menu

Enzyme Commission number in the context of Oxygenase

An oxygenase is any enzyme that oxidizes a substrate by transferring the oxygen from molecular oxygen O2 (as in air) to it. The oxygenases form a class of oxidoreductases; their EC number is EC 1.13 or EC 1.14.

View the full Wikipedia page for Oxygenase
↑ Return to Menu

Enzyme Commission number in the context of Salivary amylase

α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process:

It is the major form of amylase found in humans and other mammals. It is also present in seeds containing starch as a food reserve, and is secreted by many fungi. It is a member of glycoside hydrolase family 13.

View the full Wikipedia page for Salivary amylase
↑ Return to Menu

Enzyme Commission number in the context of Neuraminidase

Exo-α-sialidase (EC 3.2.1.18, sialidase, neuraminidase; systematic name acetylneuraminyl hydrolase) is a glycoside hydrolase that cleaves the glycosidic linkages of neuraminic acids:

Neuraminidase enzymes are a large family, found in a range of organisms. The best-known neuraminidase is the viral neuraminidase, a drug target for the prevention of the spread of influenza infection. Viral neuraminidase was the first neuraminidase to be identified. It was discovered in 1957 by Alfred Gottschalk at the Walter and Eliza Hall Institute in Melbourne. The viral neuraminidases are frequently used as antigenic determinants found on the surface of the influenza virus. Some variants of the influenza neuraminidase confer more virulence to the virus than others. Other homologues are found in mammalian cells, which have a range of functions. At least four mammalian sialidase homologues have been described in the human genome (see NEU1, NEU2, NEU3, NEU4). Sialidases may act as pathogenic factors in microbial infections.

View the full Wikipedia page for Neuraminidase
↑ Return to Menu

Enzyme Commission number in the context of Lysozyme

Lysozyme (EC 3.2.1.17, muramidase, N-acetylmuramide glycanhydrolase; systematic name peptidoglycan N-acetylmuramoylhydrolase) is an antimicrobial enzyme produced by animals that forms part of the innate immune system. It is a glycoside hydrolase that catalyzes the following process:

Peptidoglycan is the major component of gram-positive bacterial cell wall. This hydrolysis in turn compromises the integrity of bacterial cell walls causing lysis of the bacteria.

View the full Wikipedia page for Lysozyme
↑ Return to Menu

Enzyme Commission number in the context of Urease

Ureases (EC 3.5.1.5), functionally, belong to the superfamily of amidohydrolases and phosphotriesterases. Ureases are found in numerous Bacteria, Archaea, fungi, algae, plants, and some invertebrates. Ureases are nickel-containing metalloenzymes of high molecular weight. Ureases are important in degrading avian faecal matter, which is rich in uric acid, the breakdown product of which is urea, which is then degraded by urease as described here.

These enzymes catalyze the hydrolysis of urea into carbon dioxide and ammonia:

View the full Wikipedia page for Urease
↑ Return to Menu

Enzyme Commission number in the context of Xylose isomerase

In enzymology, a xylose isomerase (EC 5.3.1.5) is an enzyme that catalyzes the interconversion ofD-xylose and D-xylulose. This enzyme belongs to the family of isomerases, specifically those intramolecular oxidoreductases interconverting aldoses and ketoses. The isomerase has now been observed in nearly a hundred species of bacteria. Xylose-isomerases are also commonly called glucose isomerase or fructose isomerases due to their ability to interconvert glucose and fructose. The systematic name of this enzyme class is α-D-xylopyranose aldose-ketose-isomerase. Other names in common use include D-xylose isomerase, D-xylose ketoisomerase, and D-xylose ketol-isomerase.

View the full Wikipedia page for Xylose isomerase
↑ Return to Menu

Enzyme Commission number in the context of Monoamine oxidase

Monoamine oxidases (MAO) (EC 1.4.3.4) are a family of enzymes that catalyze the oxidation of monoamines, employing oxygen to clip off their amine group. They are found bound to the outer membrane of mitochondria in most cell types of the body. The first such enzyme was discovered in 1928 by Mary Bernheim in the liver and was named tyramine oxidase. The MAOs belong to the protein family of flavin-containing amine oxidoreductases.

MAOs are important in the breakdown of monoamines ingested in food, and also serve to inactivate monoamine neurotransmitters. Because of the latter, they are involved in a number of psychiatric and neurological diseases, some of which can be treated with monoamine oxidase inhibitors (MAOIs) which block the action of MAOs.

View the full Wikipedia page for Monoamine oxidase
↑ Return to Menu

Enzyme Commission number in the context of Coagulation factor VII

Coagulation factor VII (EC 3.4.21.21, formerly known as proconvertin) is a protein involved in coagulation and, in humans, is encoded by gene F7. It is an enzyme of the serine protease class. Once bound to tissue factor released from damaged tissues, it is converted to factor VIIa (or blood-coagulation factor VIIa, activated blood coagulation factor VII), which in turn activates factor IX and factor X.

Using genetic recombination a recombinant factor VIIa (eptacog alfa) (trade names include NovoSeven) has been approved by the FDA for the control of bleeding in hemophilia. It is sometimes used unlicensed in severe uncontrollable bleeding, although there have been safety concerns. A biosimilar form of recombinant activated factor VII (AryoSeven) is also available, but does not play any considerable role in the market.

View the full Wikipedia page for Coagulation factor VII
↑ Return to Menu