Ellipse in the context of Geometrical continuity


Ellipse in the context of Geometrical continuity

Ellipse Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Ellipse in the context of "Geometrical continuity"


⭐ Core Definition: Ellipse

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of both distances to the two focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from (the limiting case of a circle) to (the limiting case of infinite elongation, no longer an ellipse but a parabola).

An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference), integration is required to obtain an exact solution.

↓ Menu
HINT:

In this Dossier

Ellipse in the context of Archimedes

Archimedes of Syracuse (/ˌɑːrkɪˈmdz/ AR-kih-MEE-deez; c. 287 – c. 212 BC) was an Ancient Greek mathematician, physicist, engineer, astronomer, and inventor from the city of Syracuse in Sicily. Although few details of his life are known, based on his surviving work, he is considered one of the leading scientists in classical antiquity, and one of the greatest mathematicians of all time. Archimedes anticipated modern calculus and analysis by applying the concept of the infinitesimals and the method of exhaustion to derive and rigorously prove many geometrical theorems, including the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral.

Archimedes' other mathematical achievements include deriving an approximation of pi (π), defining and investigating the Archimedean spiral, and devising a system using exponentiation for expressing very large numbers. He was also one of the first to apply mathematics to physical phenomena, working on statics and hydrostatics. Archimedes' achievements in this area include a proof of the law of the lever, the widespread use of the concept of center of gravity, and the enunciation of the law of buoyancy known as Archimedes' principle. In astronomy, he made measurements of the apparent diameter of the Sun and the size of the universe. He is also said to have built a planetarium device that demonstrated the movements of the known celestial bodies, and may have been a precursor to the Antikythera mechanism. He is also credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion.

View the full Wikipedia page for Archimedes
↑ Return to Menu

Ellipse in the context of Apollonius of Perga

Apollonius of Perga (Ancient Greek: Ἀπολλώνιος ὁ Περγαῖος Apollṓnios ho Pergaîos; c. 240 BC – c. 190 BC) was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.

Aside from geometry, Apollonius worked on numerous other topics, including astronomy. Most of this work has not survived, where exceptions are typically fragments referenced by other authors like Pappus of Alexandria. His hypothesis of eccentric orbits to explain the apparently aberrant motion of the planets, commonly believed until the Middle Ages, was superseded during the Renaissance. The Apollonius crater on the Moon is named in his honor.

View the full Wikipedia page for Apollonius of Perga
↑ Return to Menu

Ellipse in the context of Paraboloid of revolution

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

Every plane section of a paraboloid made by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

View the full Wikipedia page for Paraboloid of revolution
↑ Return to Menu

Ellipse in the context of Conic sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a focus, and some particular line, called a directrix, are in a fixed ratio, called the eccentricity. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2; that is, as the set of points whose coordinates satisfy a quadratic equation in two variables which can be written in the form The geometric properties of the conic can be deduced from its equation.

View the full Wikipedia page for Conic sections
↑ Return to Menu

Ellipse in the context of Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal relationship In practical applications, a hyperbola can arise as the path followed by the shadow of the tip of a sundial's gnomon, the shape of an open orbit such as that of a celestial object exceeding the escape velocity of the nearest gravitational body, or the scattering trajectory of a subatomic particle, among others.

View the full Wikipedia page for Hyperbola
↑ Return to Menu

Ellipse in the context of Earth ellipsoid

An Earth ellipsoid or Earth spheroid is a mathematical figure approximating the Earth's shape and size, used as a reference frame for computations in geodesy, astronomy, and the geosciences. Various different reference ellipsoids have been used as approximations.

It is an oblate spheroid (an ellipsoid of revolution) whose minor axis (polar diameter), connecting the geographical poles, is approximately aligned with the Earth's axis of rotation. The ellipsoid is also defined by the major axis (equatorial axis); the difference between the two axes is slightly more than 21 km or 0.335%.

View the full Wikipedia page for Earth ellipsoid
↑ Return to Menu

Ellipse in the context of Colosseum

The Colosseum (/ˌkɒləˈsəm/ KOL-ə-SEE-əm; Italian: Colosseo [kolosˈsɛːo], ultimately from Ancient Greek word "kolossos" meaning a large statue or giant) is an elliptical amphitheatre in the centre of the city of Rome, Italy, just east of the Roman Forum. It is the largest ancient amphitheatre ever built, and is the largest standing amphitheatre in the world. Construction began under the Emperor Vespasian (r. 69–79 AD) in 72 and was completed in AD 80 under his successor and heir, Titus (r. 79–81). Further modifications were made during the reign of Domitian (r. 81–96). The three emperors who were patrons of the work are known as the Flavian dynasty, and the amphitheatre was named the Flavian Amphitheatre (Latin: Amphitheatrum Flavium; Italian: Anfiteatro Flavio [aɱfiteˈaːtro ˈflaːvjo]) by later classicists and archaeologists for its association with their family name (Flavius).

The Colosseum is built of travertine limestone, tuff (volcanic rock), and brick-faced Roman concrete. It could hold an estimated 50,000 to 80,000 spectators at various points in its history, having an average audience of some 65,000; it was used for gladiatorial contests and public spectacles including animal hunts, executions, re-enactments of famous battles, dramas based on Roman mythology, and briefly mock sea battles. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

View the full Wikipedia page for Colosseum
↑ Return to Menu

Ellipse in the context of Spheroid

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M. If the generating ellipse is a circle, the result is a sphere.

View the full Wikipedia page for Spheroid
↑ Return to Menu

Ellipse in the context of Kepler's laws of planetary motion

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, which was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced the circular orbits and epicycles of Copernicus's heliostatic model of the planets with a genuinely heliocentric theory that described how planetary velocities vary following elliptical orbits. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.

The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law establishes that when a planet is closer to the Sun, it travels faster. The third law expresses that the farther a planet is from the Sun, the longer its orbital period.

View the full Wikipedia page for Kepler's laws of planetary motion
↑ Return to Menu

Ellipse in the context of Great ellipse

A great ellipse is an ellipse passing through two points on a spheroid and having the same center as that of the spheroid. Equivalently, it is an ellipse on the surface of a spheroid and centered on the origin, or the curve formed by intersecting the spheroid by a plane through its center.For points that are separated by less than about a quarter of the circumference of the earth, about , the length of the great ellipse connecting the points is close (within one part in 500,000) to the geodesic distance.The great ellipse therefore is sometimes proposed as a suitable route for marine navigation.The great ellipse is special case of an earth section path.

View the full Wikipedia page for Great ellipse
↑ Return to Menu

Ellipse in the context of Inscribed figure

In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one.

Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle.

View the full Wikipedia page for Inscribed figure
↑ Return to Menu

Ellipse in the context of Circumference

↑ Return to Menu

Ellipse in the context of Perimeter

A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference.

Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter; if the length of the string was exact, it would equal the perimeter.

View the full Wikipedia page for Perimeter
↑ Return to Menu

Ellipse in the context of Focus (geometry)

In geometry, focuses or foci (/ˈfs/ or /ˈfk/; sg.: focus) are special points with reference to which any of a variety of curves is constructed. For example, one or two foci can be used in defining conic sections, the four types of which are the circle, ellipse, parabola, and hyperbola. In addition, two foci are used to define the Cassini oval and the Cartesian oval, and more than two foci are used in defining an n-ellipse.

View the full Wikipedia page for Focus (geometry)
↑ Return to Menu

Ellipse in the context of Eccentricity (mathematics)

In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape.One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular:

  • The eccentricity of a circle is 0.
  • The eccentricity of a non-circular ellipse is between 0 and 1.
  • The eccentricity of a parabola is 1.
  • The eccentricity of a hyperbola is greater than 1.
  • The eccentricity of a pair of lines is
View the full Wikipedia page for Eccentricity (mathematics)
↑ Return to Menu

Ellipse in the context of Limiting case (mathematics)

In mathematics, a limiting case of a mathematical object is a special case that arises when one or more components of the object take on their most extreme possible values. For example:

A limiting case is sometimes a degenerate case in which some qualitative properties differ from the corresponding properties of the generic case. For example:

View the full Wikipedia page for Limiting case (mathematics)
↑ Return to Menu

Ellipse in the context of Perimeter of an ellipse

Unlike most other elementary shapes, such as the circle and square, there is no closed-form expression for the perimeter of an ellipse. Throughout history, a large number of closed-form approximations and expressions in terms of integrals or series have been given for the perimeter of an ellipse.

View the full Wikipedia page for Perimeter of an ellipse
↑ Return to Menu