Circle in the context of "Focus (geometry)"

Play Trivia Questions online!

or

Skip to study material about Circle in the context of "Focus (geometry)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Circle in the context of Area of a circle

In geometry, the area enclosed by a circle of radius r is πr. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

One method of deriving this formula, which originated with Archimedes, involves viewing the circle as the limit of a sequence of regular polygons with an increasing number of sides. The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = 1/2 × 2πr × r, holds for a circle.

↑ Return to Menu

Circle in the context of Sphere

A sphere (from Greek σφαῖρα, sphaîra) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. That given point is the center of the sphere, and the distance r is the sphere's radius. The earliest known mentions of spheres appear in the work of the ancient Greek mathematicians.

The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres roll smoothly in any direction, so most balls used in sports and toys are spherical, as are ball bearings.

↑ Return to Menu

Circle in the context of Ellipse

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of both distances to the two focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from (the limiting case of a circle) to (the limiting case of infinite elongation, no longer an ellipse but a parabola).

An ellipse has a simple algebraic solution for its area, but for its perimeter (also known as circumference), integration is required to obtain an exact solution.

↑ Return to Menu

Circle in the context of Thales' theorem

In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid's Elements. It is generally attributed to Thales of Miletus, but it is sometimes attributed to Pythagoras.

↑ Return to Menu

Circle in the context of Regular polygons

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex or star. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed.

↑ Return to Menu

Circle in the context of Conic sections

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes considered a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

The conic sections in the Euclidean plane have various distinguishing properties, many of which can be used as alternative definitions. One such property defines a non-circular conic to be the set of those points whose distances to some particular point, called a focus, and some particular line, called a directrix, are in a fixed ratio, called the eccentricity. The type of conic is determined by the value of the eccentricity. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2; that is, as the set of points whose coordinates satisfy a quadratic equation in two variables which can be written in the form The geometric properties of the conic can be deduced from its equation.

↑ Return to Menu

Circle in the context of Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal relationship In practical applications, a hyperbola can arise as the path followed by the shadow of the tip of a sundial's gnomon, the shape of an open orbit such as that of a celestial object exceeding the escape velocity of the nearest gravitational body, or the scattering trajectory of a subatomic particle, among others.

↑ Return to Menu

Circle in the context of Orbital eccentricity

In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic (escape orbit or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy.

↑ Return to Menu

Circle in the context of Plane (geometry)

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.

↑ Return to Menu

Circle in the context of Disk (mathematics)

In geometry, a disk (also spelled disc) is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not.

For a radius , an open disk is usually denoted as , and a closed disk is . However in the field of topology the closed disk is usually denoted as , while the open disk is .

↑ Return to Menu