Edge (geometry) in the context of Subtend


Edge (geometry) in the context of Subtend

Edge (geometry) Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Edge (geometry) in the context of "Subtend"


⭐ Core Definition: Edge (geometry)

In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides) meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.

An edge may also be an infinite line separating two half-planes.The sides of a plane angle are semi-infinite half-lines (or rays).

↓ Menu
HINT:

In this Dossier

Edge (geometry) in the context of Right triangle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (14 turn or 90 degrees).

The side opposite to the right angle is called the hypotenuse (side in the figure). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus). Side may be identified as the side adjacent to angle and opposite (or opposed to) angle while side is the side adjacent to angle and opposite angle

View the full Wikipedia page for Right triangle
↑ Return to Menu

Edge (geometry) in the context of Platonic solids

In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: a tetrahedron (four faces), a cube (six faces), an octahedron (eight faces), a dodecahedron (twelve faces), and an icosahedron (twenty faces).

Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the Timaeus, that the classical elements were made of these regular solids.

View the full Wikipedia page for Platonic solids
↑ Return to Menu

Edge (geometry) in the context of Pyramid (geometry)

A pyramid is a polyhedron (a geometric figure) formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. A pyramid is a conic solid with a polygonal base. Many types of pyramids can be found by determining the shape of bases, either by based on a regular polygon (regular pyramids) or by cutting off the apex (truncated pyramid). It can be generalized into higher dimensions, known as hyperpyramid. All pyramids are self-dual.

View the full Wikipedia page for Pyramid (geometry)
↑ Return to Menu

Edge (geometry) in the context of Polygon

In geometry, a polygon (/ˈpɒlɪɡɒn/) is a plane figure made up of line segments connected to form a closed polygonal chain.

The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3-gon.

View the full Wikipedia page for Polygon
↑ Return to Menu

Edge (geometry) in the context of Triangular

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.

In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated within a unique flat plane. More generally, four points in three-dimensional Euclidean space determine a solid figure called tetrahedron.

View the full Wikipedia page for Triangular
↑ Return to Menu

Edge (geometry) in the context of Quadrilateral

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons (e.g. pentagon). Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

Quadrilaterals are either simple (not self-intersecting), or complex (self-intersecting, or crossed). Simple quadrilaterals are either convex or concave.

View the full Wikipedia page for Quadrilateral
↑ Return to Menu

Edge (geometry) in the context of Subtended angle

In geometry, an angle subtended (from Latin for "stretched under") by a line segment at an arbitrary vertex is formed by the two rays between the vertex and each endpoint of the segment. For example, a side of a triangle subtends the opposite angle.

More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc.For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints.

View the full Wikipedia page for Subtended angle
↑ Return to Menu

Edge (geometry) in the context of Inscribed figure

In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one.

Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle.

View the full Wikipedia page for Inscribed figure
↑ Return to Menu

Edge (geometry) in the context of Circumference

↑ Return to Menu

Edge (geometry) in the context of Apothem

The apothem (sometimes abbreviated as apo) of a regular polygon is a line segment from the center to the midpoint of one of its sides. Equivalently, it is the line drawn from the center of the polygon that is perpendicular to one of its sides. The word "apothem" can also refer to the length of that line segment and comes from the ancient Greek ἀπόθεμα ("put away, put aside"), made of ἀπό ("off, away") and θέμα ("that which is laid down"), indicating a generic line written down. Regular polygons are the only polygons that have apothems. Because of this, all the apothems in a polygon will be congruent.

View the full Wikipedia page for Apothem
↑ Return to Menu

Edge (geometry) in the context of Polyhedra

In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-)  'many' and ἕδρον (-hedron)  'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surface. The terms solid polyhedron and polyhedral surface are commonly used to distinguish the two concepts. Also, the term polyhedron is often used to refer implicitly to the whole structure formed by a solid polyhedron, its polyhedral surface, its faces, its edges, and its vertices.

There are many definitions of polyhedra, not all of which are equivalent. Under any definition, polyhedra are typically understood to generalize two-dimensional polygons and to be the three-dimensional specialization of polytopes (a more general concept in any number of dimensions). Polyhedra have several general characteristics that include the number of faces, topological classification by Euler characteristic, duality, vertex figures, surface area, volume, interior lines, Dehn invariant, and symmetry. A symmetry of a polyhedron means that the polyhedron's appearance is unchanged by the transformation such as rotating and reflecting.

View the full Wikipedia page for Polyhedra
↑ Return to Menu

Edge (geometry) in the context of Face (geometry)

In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object. For example, a cube has six faces in this sense.

In more modern treatments of the geometry of polyhedra and higher-dimensional polytopes, a "face" is defined in such a way that it may have any dimension. The vertices, edges, and (2-dimensional) faces of a polyhedron are all faces in this more general sense.

View the full Wikipedia page for Face (geometry)
↑ Return to Menu

Edge (geometry) in the context of Diagonal

In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word diagonal derives from the ancient Greek διαγώνιος diagonios, "from corner to corner" (from διά- dia-, "through", "across" and γωνία gonia, "corner", related to gony "knee"); it was used by both Strabo and Euclid to refer to a line connecting two vertices of a rhombus or cuboid, and later adopted into Latin as diagonus ("slanting line").

View the full Wikipedia page for Diagonal
↑ Return to Menu

Edge (geometry) in the context of Edge-transitive

In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal (from Greek τόξον  'arc') or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

View the full Wikipedia page for Edge-transitive
↑ Return to Menu

Edge (geometry) in the context of Vertex (geometry)

In geometry, a vertex (pl.: vertices or vertexes), also called a corner, is a point where two or more curves, lines, or line segments meet or intersect. For example, the point where two lines meet to form an angle and the point where edges of polygons and polyhedra meet are vertices.

View the full Wikipedia page for Vertex (geometry)
↑ Return to Menu

Edge (geometry) in the context of Doubling the cube

Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other methods.

According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.

View the full Wikipedia page for Doubling the cube
↑ Return to Menu