Earthquakes in the context of "Japan Trench"

Play Trivia Questions online!

or

Skip to study material about Earthquakes in the context of "Japan Trench"

Ad spacer

⭐ Core Definition: Earthquakes

An earthquake, also called a quake, tremor, or temblor, is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

In its most general sense, the word earthquake is used to describe any seismic event that generates seismic waves. Earthquakes can occur naturally or be induced by human activities, such as mining, fracking, and nuclear weapons testing. The initial point of rupture is called the hypocenter or focus, while the ground level directly above it is the epicenter. Earthquakes are primarily caused by geological faults, but also by volcanism, landslides, and other seismic events.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Earthquakes in the context of Japan Trench

The Japan Trench is an oceanic trench part of the Pacific Ring of Fire off northeast Japan. It extends from the Kuril Islands to the northern end of the Izu Islands, and is 8,046 metres (26,398 ft) at its deepest. It links the Kuril–Kamchatka Trench to the north and the Izu–Ogasawara Trench to its south with a length of 800 kilometres (497 mi). This trench is created as the oceanic Pacific plate subducts beneath the continental Okhotsk microplate (a microplate formerly a part of the North American plate). The subduction process causes bending of the down going plate, creating a deep trench. Continuing movement on the subduction zone associated with the Japan Trench is one of the main causes of tsunamis and earthquakes in northern Japan, including the megathrust Tōhoku earthquake and resulting tsunami that occurred on 11 March 2011. The rate of subduction associated with the Japan Trench has been recorded at about 7.9–9.2 centimetres (3.1–3.6 in)/yr.

↓ Explore More Topics
In this Dossier

Earthquakes in the context of Al-Kindi

Abū Yūsuf Yaʻqūb ibn ʼIsḥāq aṣ-Ṣabbāḥ al-Kindī (/ælˈkɪndi/; Arabic: أبو يوسف يعقوب بن إسحاق الصبّاح الكندي; Latin: Alkindus; c. 801–873 AD) was an Arab Muslim polymath active as a philosopher, mathematician, physician, and music theorist. Al-Kindi was the first of the Islamic peripatetic philosophers, and is hailed as the "father of Arab philosophy".

Al-Kindi was born in Kufa and educated in Baghdad. He became a prominent figure in the House of Wisdom, and a number of Abbasid Caliphs appointed him to oversee the translation of Greek scientific and philosophical texts into the Arabic language. This contact with "the philosophy of the ancients" (as Hellenistic philosophy was often referred to by Muslim scholars) had a profound effect on him, as he synthesized, adapted and promoted Hellenistic and Peripatetic philosophy in the Muslim world. He subsequently wrote hundreds of original treatises of his own on a range of subjects ranging from metaphysics, ethics, logic and psychology, to medicine, pharmacology, mathematics, astronomy, astrology and optics, and further afield to more practical topics like perfumes, swords, jewels, glass, dyes, zoology, tides, mirrors, meteorology and earthquakes.

↑ Return to Menu

Earthquakes in the context of Active fault

An active fault is a fault that is likely to become the source of another earthquake sometime in the future. Geologists commonly consider faults to be active if there has been movement observed or evidence of seismic activity during the last 10,000 years.

Active faulting is considered to be a geologic hazard – one related to earthquakes as a cause. Effects of movement on an active fault include strong ground motion, surface faulting, tectonic deformation, landslides and rockfalls, liquefaction, tsunamis, and seiches.

↑ Return to Menu

Earthquakes in the context of Geodynamics

Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mountain building, volcanoes, earthquakes, or faulting. It also attempts to probe the internal activity by measuring magnetic fields, gravity, and seismic waves, as well as the mineralogy of rocks and their isotopic composition. Methods of geodynamics are also applied to exploration of other planets.

↑ Return to Menu

Earthquakes in the context of Menouthis

Menouthis was a sacred city in ancient Egypt, devoted to the Egyptian goddess Isis and god Serapis. The city was probably submerged under the sea as a result of catastrophic natural causes, including earthquakes or a flooding of the Nile. Land in the bay area was subject to rising sea levels, earthquakes, and tsunamis, parts of it apparently becoming submerged after a process of soil liquefaction sometime at the end of the 2nd century BC.

↑ Return to Menu

Earthquakes in the context of Geb

Geb (Ancient Egyptian: gbb, Egyptological pronunciation: Gebeb), also known as Ceb (/ˈsɛb/, /ˈkɛb/), was the Egyptian god of the Earth and a mythological member of the Ennead of Heliopolis. He could also be considered a father of snakes. It was believed in ancient Egypt that Geb's laughter created earthquakes and that he allowed crops to grow.

↑ Return to Menu

Earthquakes in the context of Population bottleneck

A population bottleneck or genetic bottleneck is a sharp reduction in the size of a population due to environmental events such as famines, earthquakes, floods, fires, disease, and droughts; or human activities such as genocide, speciocide, widespread violence or intentional culling. Such events can reduce the variation in the gene pool of a population; thereafter, a smaller population, with a smaller genetic diversity, remains to pass on genes to future generations of offspring. Genetic diversity remains lower, increasing only when gene flow from another population occurs or very slowly increasing with time as random mutations occur. This results in a reduction in the robustness of the population and in its ability to adapt to and survive selecting environmental changes, such as climate change or a shift in available resources. Alternatively, if survivors of the bottleneck are the individuals with the greatest genetic fitness, the frequency of the fitter genes within the gene pool is increased, while the pool itself is reduced.

The genetic drift caused by a population bottleneck can change the proportional random distribution of alleles and even lead to loss of alleles. The chances of inbreeding and genetic homogeneity can increase, possibly leading to inbreeding depression. Smaller population size can also cause deleterious mutations to accumulate.

↑ Return to Menu

Earthquakes in the context of Teletsunami

A teletsunami (also called an ocean-wide tsunami, distant tsunami, distant-source tsunami, far-field tsunami, or trans-ocean tsunami) is a tsunami that originates from a distant source, defined as more than 1,000 km (620 mi) away or three hours' travel from the area of interest, sometimes travelling across an ocean. All known teletsunamis have been generated by major earthquakes such as the 1755 Lisbon earthquake, 1960 Valdivia earthquake, 1964 Alaska earthquake, 2004 Indian Ocean earthquake, 2011 Tohoku earthquake, and the 2021 South Sandwich Islands earthquakes.

↑ Return to Menu

Earthquakes in the context of Aseismic ridge

An aseismic ridge is “a long, linear and mountainous structure that crosses the basin floor of some oceans.” They do not cause earthquakes.

It is called an “aseismic ridge” because they do not receive seismic activity. As a result, they tend to be stable. They are 700-5000 kilometers in length.

↑ Return to Menu