Doppler effect in the context of "Redshift"

⭐ In the context of redshift, the Doppler effect is considered…

Ad spacer

⭐ Core Definition: Doppler effect

The Doppler effect (also Doppler shift) is the change in the frequency or, equivalently, the period of a wave in relation to an observer who is moving relative to the source of the wave. It is named after the physicist Christian Doppler, who described the phenomenon in 1842. A common example of Doppler shift is the change of pitch heard when a vehicle approaches and recedes from an observer. Compared to the emitted sound, the received sound has a higher pitch during the approach, identical at the instant of passing by, and lower pitch during the recession.

When the source of the sound wave is moving towards the observer, each successive cycle of the wave is emitted from a position closer to the observer than the previous cycle. Hence, from the observer's perspective, the period or time between cycles is reduced, meaning the frequency is increased. Conversely, if the source of the sound wave is moving away from the observer, each cycle of the wave is emitted from a position farther from the observer than the previous cycle, so the period or time between successive cycles is increased, thus reducing the frequency.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

šŸ‘‰ Doppler effect in the context of Redshift

In physics, a redshift is an increase in the wavelength, or equivalently, a decrease in the frequency, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift.

Three forms of redshift occur in astronomy and cosmology: Doppler redshifts due to the relative motions of radiation sources, gravitational redshift as radiation escapes from gravitational potentials, and cosmological redshifts caused by the universe expanding. In astronomy, the value of a redshift is often denoted by the letter z, corresponding to the fractional change in wavelength (positive for redshifts, negative for blueshifts), and by the wavelength ratio 1 + z (which is greater than 1 for redshifts and less than 1 for blueshifts). Automated astronomical redshift surveys are an important tool for learning about the large-scale structure of the universe. Redshift and blueshift can also be related to photon energy and, via Planck's law, to a corresponding blackbody temperature.

↓ Explore More Topics
In this Dossier

Doppler effect in the context of Relativistic speed

Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models considering and not considering relativity. Related words are velocity, rapidity, and celerity which is proper velocity. Speed is a scalar, being the magnitude of the velocity vector which in relativity is the four-velocity and in three-dimension Euclidean space a three-velocity. Speed is empirically measured as average speed, although current devices in common use can estimate speed over very small intervals and closely approximate instantaneous speed. Non-relativistic discrepancies include cosine error which occurs in speed detection devices when only one scalar component of the three-velocity is measured and the Doppler effect which may affect observations of wavelength and frequency.

Relativistic effects are highly non-linear and for everyday purposes are insignificant because the Newtonian model closely approximates the relativity model. In special relativity the Lorentz factor is a measure of time dilation, length contraction and the relativistic mass increase of a moving object.

↑ Return to Menu

Doppler effect in the context of Astronomical spectroscopy

Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei.

↑ Return to Menu

Doppler effect in the context of Stellar pulsation

Stellar pulsations are caused by expansions and contractions in the outer layers as a star seeks to maintain equilibrium. These fluctuations in stellar radius cause corresponding changes in the luminosity of the star. Astronomers are able to deduce this mechanism by measuring the spectrum and observing the Doppler effect. Many intrinsic variable stars that pulsate with large amplitudes, such as the classical Cepheids, RR Lyrae stars and large-amplitude Delta Scuti stars show regular light curves.

This regular behavior is in contrast with the variability of stars that lie parallel to and to the high-luminosity/low-temperature side of the classical variable stars in the Hertzsprung–Russell diagram. These giant stars are observed to undergo pulsations ranging from weak irregularity, when one can still define an average cycling time or period, (as in most RV Tauri and semiregular variables) to the near absence of repetitiveness in the irregular variables. The W Virginis variables are at the interface; the short period ones are regular and the longer period ones show first relatively regular alternations in the pulsationscycles, followed by the onset of mild irregularity as in the RV Tauri stars into which they gradually morph as their periods get longer. Stellar evolution and pulsation theories suggest that these irregular stars have a much higher luminosity to mass (L/M) ratios.

↑ Return to Menu

Doppler effect in the context of Sodar

Sodar, an acronym of sonic detection and ranging, is a meteorological instrument used as a wind profiler based on the scattering of sound waves by atmospheric turbulence. Sodar equipment is used to measure wind speed at various heights above the ground, and the thermodynamic structure of the lower layer of the atmosphere.

Sodar systems are in fact nothing more than sonar systems used in the air rather than in water. More specifically, since they operate using the Doppler effect with a multi-beam configuration to determine wind speed, they are the exact in-air equivalent to a subclass of sonar systems known as acoustic Doppler current profilers (ADCP). Other names used for sodar systems include sounder, echosounder and acoustic radar.

↑ Return to Menu

Doppler effect in the context of Radar gun

A radar speed gun, also known as a radar gun, speed gun, or speed trap gun, is a device used to measure the speed of moving objects. It is commonly used by police to check the speed of moving vehicles while conducting traffic enforcement, and in professional sports to measure speeds such as those of baseball pitches, tennis serves, and cricket bowls.

A radar speed gun is a Doppler radar unit that may be handheld, vehicle-mounted, or static. It measures the speed of the objects at which it is pointed by detecting a change in frequency of the returned radar signal caused by the Doppler effect, whereby the frequency of the returned signal is increased in proportion to the object's speed of approach if the object is approaching, and lowered if the object is receding. Such devices are frequently used for speed limit enforcement, alongside more modern LIDAR speed gun instruments, which use pulsed laser light instead of radar. While radar speed guns may be used while stationary, LIDAR speed guns are often favored over radar speed guns for stationary enforcement applications due to increased targeting precision.

↑ Return to Menu