Blackbody temperature in the context of "Redshift"

⭐ In the context of redshift, blackbody temperature is considered…

Ad spacer

⭐ Core Definition: Blackbody temperature

A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The radiation emitted by a black body in thermal equilibrium with its environment is called black-body radiation. The name "black body" is given because it absorbs all colors of light. In contrast, a white body is one with a "rough surface that reflects all incident rays completely and uniformly in all directions."

A black body in thermal equilibrium (that is, at a constant temperature) emits electromagnetic black-body radiation. The radiation is emitted according to Planck's law, meaning that it has a spectrum that is determined by the temperature alone (see figure at right), not by the body's shape or composition.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Blackbody temperature in the context of Redshift

In physics, a redshift is an increase in the wavelength, or equivalently, a decrease in the frequency, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift.

Three forms of redshift occur in astronomy and cosmology: Doppler redshifts due to the relative motions of radiation sources, gravitational redshift as radiation escapes from gravitational potentials, and cosmological redshifts caused by the universe expanding. In astronomy, the value of a redshift is often denoted by the letter z, corresponding to the fractional change in wavelength (positive for redshifts, negative for blueshifts), and by the wavelength ratio 1 + z (which is greater than 1 for redshifts and less than 1 for blueshifts). Automated astronomical redshift surveys are an important tool for learning about the large-scale structure of the universe. Redshift and blueshift can also be related to photon energy and, via Planck's law, to a corresponding blackbody temperature.

↓ Explore More Topics
In this Dossier

Blackbody temperature in the context of Red shift

In physics, a redshift is an increase in the wavelength, or equivalently, a decrease in the frequency, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift.

Three forms of redshift occur in astronomy and cosmology: Doppler redshifts due to the relative motions of radiation sources, gravitational redshift as radiation escapes from gravitational potentials, and cosmological redshifts caused by the universe expanding. The value of a redshift is often denoted by the letter z, corresponding to the fractional change in wavelength (positive for redshifts, negative for blueshifts), and by the wavelength ratio 1 + z (which is greater than 1 for redshifts and less than 1 for blueshifts). Automated astronomical redshift surveys are an important tool for learning about the large-scale structure of the universe. Redshift and blueshift can also be related to photon energy and, via Planck's law, to a corresponding blackbody temperature.

↑ Return to Menu