Digital image in the context of Ray tracing (graphics)


Digital image in the context of Ray tracing (graphics)

Digital image Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Digital image in the context of "Ray tracing (graphics)"


⭐ Core Definition: Digital image

A digital image is an image composed of picture elements, also known as pixels, each with finite, discrete quantities of numeric representation for its intensity or gray level that is an output from its two-dimensional functions fed as input by its spatial coordinates denoted with x, y on the x-axis and y-axis, respectively. An image can be vector or raster type. By itself, the term "digital image" usually refers to raster images or bitmapped images (as opposed to vector images).

↓ Menu
HINT:

In this Dossier

Digital image in the context of Image processing

Digital image processing is the use of a digital computer to process digital images through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more), digital image processing may be modeled in the form of multidimensional systems. The generation and development of digital image processing are mainly affected by three factors: first, the development of computers; second, the development of mathematics (especially the creation and improvement of discrete mathematics theory); and third, the demand for a wide range of applications in environment, agriculture, military, industry and medical science has increased.

View the full Wikipedia page for Image processing
↑ Return to Menu

Digital image in the context of Photographic print

Photographic printing is the process of producing a final image on paper for viewing, using chemically sensitized paper. The paper is exposed to a photographic negative, a positive transparency (or slide), or a digital image file projected using an enlarger or digital exposure unit such as a LightJet or Minilab printer. Alternatively, the negative or transparency may be placed atop the paper and directly exposed, creating a contact print. Digital photographs are commonly printed on plain paper, for example by a color printer, but this is not considered "photographic printing".

Following exposure, the paper is processed to reveal and make permanent the latent image.

View the full Wikipedia page for Photographic print
↑ Return to Menu

Digital image in the context of Digitizing

Digitization is the process of converting information into a digital (i.e. computer-readable) format. The result is the representation of an object, image, sound, document, or signal (usually an analog signal) obtained by generating a series of numbers that describe a discrete set of points or samples. The result is called digital representation or, more specifically, a digital image, for the object, and digital form, for the signal. In modern practice, the digitized data is in the form of binary numbers, which facilitates processing by digital computers and other operations, but digitizing simply means "the conversion of analog source material into a numerical format"; the decimal or any other number system can be used instead.

Digitization is of crucial importance to data processing, storage, and transmission, because it "allows information of all kinds in all formats to be carried with the same efficiency and also intermingled." Though analog data is typically more stable, digital data has the potential to be more easily shared and accessed and, in theory, can be propagated indefinitely without generation loss, provided it is migrated to new, stable formats as needed. This potential has led to institutional digitization projects designed to improve access and the rapid growth of the digital preservation field.

View the full Wikipedia page for Digitizing
↑ Return to Menu

Digital image in the context of Digital imaging

Digital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the processing, compression, storage, printing and display of such images. A key advantage of a digital image, versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.

Digital imaging can be classified by the type of electromagnetic radiation or other waves whose variable attenuation, as they pass through or reflect off objects, conveys the information that constitutes the image. In all classes of digital imaging, the information is converted by image sensors into digital signals that are processed by a computer and made output as a visible-light image. For example, the medium of visible light allows digital photography (including digital videography) with various kinds of digital cameras (including digital video cameras). X-rays allow digital X-ray imaging (digital radiography, fluoroscopy, and CT), and gamma rays allow digital gamma ray imaging (digital scintigraphy, SPECT, and PET). Sound allows ultrasonography (such as medical ultrasonography) and sonar, and radio waves allow radar. Digital imaging lends itself well to image analysis by software, as well as to image editing (including image manipulation).

View the full Wikipedia page for Digital imaging
↑ Return to Menu

Digital image in the context of Raster graphics

In computer graphics and digital photography, a raster graphic, raster image, or simply raster is a digital image made up of a rectangular grid of tiny colored (usually square) so-called pixels. Unlike vector graphics which use mathematical formulas to describe shapes and lines, raster images store the exact color of each pixel, making them ideal for photographs and images with complex colors and details. Raster images are characterized by their dimensions (width and height in pixels) and color depth (the number of bits per pixel). They can be displayed on computer displays, printed on paper, or viewed on other media, and are stored in various image file formats.

The printing and prepress industries know raster graphics as contones (from "continuous tones"). In contrast, line art is usually implemented as vector graphics in digital systems.

View the full Wikipedia page for Raster graphics
↑ Return to Menu

Digital image in the context of Analog image processing

Analog image processing is the use of an optical computer to process physical, optical images formed by light waves coming from an object, as opposed to the digital image processing and its use of digital computers to process pixelated, digital images. Correspondingly, a range of digital image processing techniques possess direct physical analogs. For example, fast Fourier transform algorithms are commonly implemented in digital phase correlation and other digital image processing techniques. These digital Fourier transforms can be considered to be the digitized approximation of methods utilizing Fourier transforming properties of an ideal lens.

View the full Wikipedia page for Analog image processing
↑ Return to Menu

Digital image in the context of JPEG

JPEG (/ˈpɛɡ/ JAY-peg, short for Joint Photographic Experts Group and sometimes retroactively referred to as JPEG 1) is a commonly used method of lossy compression for digital images, particularly for those images produced by digital photography. The degree of compression can be adjusted, allowing a selectable trade off between storage size and image quality. JPEG typically achieves 10:1 compression with noticeable, but widely agreed to be acceptable perceptible loss in image quality. Since its introduction in 1992, JPEG has been the most widely used image compression standard in the world, and the most widely used digital image format, with several billion JPEG images produced every day as of 2015.

The Joint Photographic Experts Group created the standard in 1992, based on the discrete cosine transform (DCT) algorithm. JPEG was largely responsible for the proliferation of digital images and digital photos across the Internet and later social media. JPEG compression is used in a number of image file formats. JPEG/Exif is the most common image format used by digital cameras and other photographic image capture devices; along with JPEG/JFIF, it is the most common format for storing and transmitting photographic images on the World Wide Web. These format variations are often not distinguished and are simply called JPEG.

View the full Wikipedia page for JPEG
↑ Return to Menu

Digital image in the context of Computer vision

Computer vision tasks include methods for acquiring, processing, analyzing, and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the form of decisions. "Understanding" in this context signifies the transformation of visual images (the input to the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.

The scientific discipline of computer vision is concerned with the theory behind artificial systems that extract information from images. Image data can take many forms, such as video sequences, views from multiple cameras, multi-dimensional data from a 3D scanner, 3D point clouds from LiDaR sensors, or medical scanning devices. The technological discipline of computer vision seeks to apply its theories and models to the construction of computer vision systems.

View the full Wikipedia page for Computer vision
↑ Return to Menu

Digital image in the context of Computer file

A computer file is a collection of data on a computer storage device, primarily identified by its filename. Just as words can be written on paper, so too can data be written to a computer file. Files can be shared with and transferred between computers and mobile devices via removable media, networks, or the Internet.

Different types of computer files are designed for different purposes. A file may be designed to store a written message, a document, a spreadsheet, an image, a video, a program, or any wide variety of other kinds of data. Certain files can store multiple data types at once.

View the full Wikipedia page for Computer file
↑ Return to Menu

Digital image in the context of Compositing

Compositing is the process or technique of combining visual elements from separate sources into single images, often to create the illusion that all those elements are parts of the same scene. Live-action shooting for compositing is variously called "chroma key", "blue screen", "green screen" and other names. Today, most compositing is achieved through digital image manipulation. Pre-digital compositing techniques, however, go back as far as the trick films of Georges Méliès in the late 19th century, and some are still in use.

View the full Wikipedia page for Compositing
↑ Return to Menu

Digital image in the context of Inkjet printing

Inkjet printing is a type of computer printing that recreates a digital image by propelling very fine droplets of ink onto paper and plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensive consumer models to expensive professional machines. By 2019, laser printers outsold inkjet printers by nearly a 2:1 ratio, 9.6% vs 5.1% of all computer peripherals.

The concept of inkjet printing originated in the 20th century, and the technology was first extensively developed in the early 1950s. While working at Canon in Japan, Ichiro Endo suggested the idea for a "bubble jet" printer, while around the same time Jon Vaught at Hewlett-Packard (HP) was developing a similar idea. In the late 1970s, inkjet printers that could reproduce digital images generated by computers were developed, mainly by Epson, HP and Canon. In the worldwide consumer market, four manufacturers account for the majority of inkjet printer sales: Canon, HP, Epson and Brother.

View the full Wikipedia page for Inkjet printing
↑ Return to Menu

Digital image in the context of Digital video

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises a series of digital images displayed in rapid succession, usually at 24, 25, 30, or 60 frames per second. Digital video has many advantages, such as easy copying, multicasting, sharing and storage.

Digital video was first introduced commercially in 1986 with the Sony D1 format, which recorded an uncompressed standard-definition component video signal in digital form. In addition to uncompressed formats, popular compressed digital video formats today include MPEG-2, H.264 and AV1. Modern interconnect standards used for playback of digital video include HDMI, DisplayPort, Digital Visual Interface (DVI) and serial digital interface (SDI).

View the full Wikipedia page for Digital video
↑ Return to Menu

Digital image in the context of 3D computer graphics

3D computer graphics, sometimes called 3D computer-generated imagery (3D-CGI), are computer graphics that use a three-dimensional (3D) representation of geometric data (often Cartesian) stored in the computer for the purposes of performing calculations and rendering digital images, usually 2D images but sometimes 3D images. The resulting images may be stored for viewing later (possibly as an animation) or displayed in real time.

3D computer graphics, contrary to what the name suggests, are most often displayed on two-dimensional displays. Unlike 3D film and similar techniques, the result is two-dimensional, without visual depth. More often, 3D graphics are being displayed on 3D displays, like in virtual reality systems.

View the full Wikipedia page for 3D computer graphics
↑ Return to Menu

Digital image in the context of Image scanner

An image scanner (often abbreviated to just scanner) is a device that optically scans images, printed text, handwriting, or an object and converts it to a digital image. The most common type of scanner used in the home and the office is the flatbed scanner, where the document is placed on a glass bed. A sheetfed scanner, which moves the page across an image sensor using a series of rollers, may be used to scan one page of a document at a time or multiple pages, as in an automatic document feeder. A handheld scanner is a portable version of an image scanner that can be used on any flat surface. Scans are typically downloaded to the computer that the scanner is connected to, although some scanners are able to store scans on standalone flash media (e.g., memory cards and USB drives).

Modern scanners typically use a charge-coupled device (CCD) or a contact image sensor (CIS) as the image sensor, whereas drum scanners, developed earlier and still used for the highest possible image quality, use a photomultiplier tube (PMT) as the image sensor. Document cameras, which use commodity or specialized high-resolution cameras, photograph documents all at once.

View the full Wikipedia page for Image scanner
↑ Return to Menu

Digital image in the context of Image analysis

Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face.

Computers are indispensable for the analysis of large amounts of data, for tasks that require complex computation, or for the extraction of quantitative information. On the other hand, the human visual cortex is an excellent image analysis apparatus, especially for extracting higher-level information, and for many applications — including medicine, security, and remote sensing — human analysts still cannot be replaced by computers. For this reason, many important image analysis tools such as edge detectors and neural networks are inspired by human visual perception models.

View the full Wikipedia page for Image analysis
↑ Return to Menu

Digital image in the context of Digital photography

Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. It is a form of digital imaging based on gathering visible light (or for scientific instruments, light in various ranges of the electromagnetic spectrum).

Until the advent of such technology, photographs were made by exposing light-sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing.

View the full Wikipedia page for Digital photography
↑ Return to Menu