Diffuse sky radiation in the context of "Twilight"

Play Trivia Questions online!

or

Skip to study material about Diffuse sky radiation in the context of "Twilight"

Ad spacer

⭐ Core Definition: Diffuse sky radiation

Diffuse sky radiation, is solar radiation reaching the Earth's surface after having been scattered from the direct solar beam by molecules or particulates in the atmosphere. It is also called sky radiation, the determinative process for changing the colors of the sky. It is normally measured on a horizontal surface, thus frequently termed diffuse horizontal irradiance (DHI), often in the unit of watts per square meter (W/m). Approximately 23% of direct incident radiation of total sunlight is removed from the direct solar beam by scattering into the atmosphere; of this amount (of incident radiation) about two-thirds ultimately reaches the earth as photon diffused skylight radiation.

The dominant radiative scattering processes in the atmosphere are Rayleigh scattering and Mie scattering; they are elastic, meaning that a photon of light can be deviated from its path without being absorbed and without changing wavelength.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Diffuse sky radiation in the context of Twilight

Twilight is daylight illumination produced by diffuse sky radiation when the Sun is below the horizon as sunlight from the upper atmosphere is scattered in a way that illuminates both the Earth's lower atmosphere and also the Earth's surface. Twilight also may be any period when this illumination occurs, including dawn and dusk.

The lower the Sun is beneath the horizon, the dimmer the sky (other factors such as atmospheric conditions being equal). When the Sun reaches 18° below the horizon, the illumination emanating from the sky is nearly zero, and evening twilight becomes nighttime. When the Sun approaches re-emergence, reaching 18° below the horizon, nighttime becomes morning twilight. Owing to its distinctive quality, primarily the absence of shadows and the appearance of objects silhouetted against the lit sky, twilight has long been popular with photographers and painters, who often refer to it as the blue hour, after the French expression l'heure bleue.

↓ Explore More Topics
In this Dossier

Diffuse sky radiation in the context of Chlorophyll

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). Chlorophyll allows plants to absorb energy from light. Those pigments are involved in oxygenic photosynthesis, as opposed to bacteriochlorophylls, related molecules found only in bacteria and involved in anoxygenic photosynthesis.

Chlorophylls absorb light most strongly in the blue portion of the electromagnetic spectrum as well as the red portion. Conversely, it is a poor absorber of green and near-green portions of the spectrum. Hence chlorophyll-containing tissues appear green because green light, diffusively reflected by structures like cell walls, is less absorbed. Two types of chlorophyll exist in the photosystems of green plants: chlorophyll a and b.

↑ Return to Menu

Diffuse sky radiation in the context of Daylight

Daylight is the combination of all direct and indirect sunlight during the daytime. This includes direct sunlight, diffuse sky radiation, and (often) both of these reflected by Earth and terrestrial objects, like landforms and buildings. Sunlight scattered or reflected by astronomical objects is generally not considered daylight. Therefore, daylight excludes moonlight, despite it being reflected indirect sunlight.

↑ Return to Menu

Diffuse sky radiation in the context of Airglow

Airglow is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffused sunlight from the far side are removed. This phenomenon originates with self-illuminated gases and has no relationship with Earth's magnetism or sunspot activity, causing aurorae.

Airglow occurs in two forms, as a result of a pair of interlinked but different processes. Dayglow occurs during the day and is caused by the splitting of atmospheric molecules but is too faint to be seen in daylight. During the night airglow occurs as nightglow, when the molecules split during daytime recombine.

↑ Return to Menu

Diffuse sky radiation in the context of Nuclear winter

Nuclear winter is a severe and prolonged global climatic cooling effect that is hypothesized to occur after widespread urban firestorms following a large-scale nuclear war. The hypothesis is based on the fact that such fires can inject soot into the stratosphere, where it can block some direct sunlight from reaching the surface of the Earth. It is speculated that the resulting cooling, typically lasting a decade, would lead to widespread crop failure, a global nuclear famine, and an animal mass extinction event.

Climate researchers study nuclear winter via computer models and scenarios. Results are highly dependent on nuclear yields, weather and how many cities are targeted, their flammable material content, and the firestorms' atmospheric environments, convections, and durations. Firestorm case studies include the World War II bombings of Hiroshima, Tokyo, Hamburg, Dresden, and London, and modern observations from large-area wildfires such as the 2021 British Columbia wildfires.

↑ Return to Menu

Diffuse sky radiation in the context of Stellar corona

In astronomy, a corona (pl.: coronas or coronae) is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures such as prominences, coronal loops, and helmet streamers.

The Sun's corona lies above the chromosphere and extends millions of kilometres into outer space. Coronal light is typically obscured by diffuse sky radiation and glare from the solar disk, but can be easily seen by the naked eye during a total solar eclipse or with a specialized coronagraph. Spectroscopic measurements indicate strong ionization in the corona and a plasma temperature in excess of 1000000 kelvins, much hotter than the surface of the Sun, known as the photosphere.

↑ Return to Menu

Diffuse sky radiation in the context of Dawn

Dawn is the time that marks the beginning of twilight before sunrise. It is recognized by the appearance of indirect sunlight being scattered in Earth's atmosphere, when the centre of the Sun's disc has reached 18° below the observer's horizon. This morning twilight period will last until sunrise (when the Sun's upper limb breaks the horizon), when direct sunlight outshines the diffused light.

↑ Return to Menu

Diffuse sky radiation in the context of Blue hour

The blue hour (from French l'heure bleue; pronounced [lœʁ blø]) is the period of twilight (in the morning or evening, around the nautical stage) when the Sun is at a significant depth below the horizon. During this time, the remaining sunlight takes on a mostly blue shade. This shade differs from the colour of the sky on a clear day, which is caused by Rayleigh scattering.

The blue hour occurs when the Sun is far enough below the horizon so that the sunlight's blue wavelengths dominate due to the Chappuis absorption in the ozone layer. Since the term is colloquial, it lacks an official definition such as dawn, dusk, or the three stages of twilight. Rather, blue hour refers to the state of natural lighting that usually occurs around the nautical stage of the twilight period (at dawn or dusk).

↑ Return to Menu

Diffuse sky radiation in the context of Planetshine

Planetshine is the dim illumination, by sunlight reflected from a planet, of all or part of the otherwise dark side of any moon orbiting the body. Planetlight is the diffuse reflection of sunlight from a planet, whose albedo can be measured.

The most observed and familiar example of planetshine is earthshine on the Moon, which is most visible from the night side of Earth when the lunar phase is crescent or nearly new, without the atmospheric brightness of the daytime sky. Typically, this results in the dark side of the Moon being bathed in a faint light.

↑ Return to Menu