Decay chain in the context of Thorium-232


Decay chain in the context of Thorium-232

Decay chain Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Decay chain in the context of "Thorium-232"


⭐ Core Definition: Decay chain

In nuclear science a decay chain refers to the predictable series of radioactive disintegrations undergone by the nuclei of certain unstable chemical elements.

Radioactive isotopes do not usually decay directly to stable isotopes, but rather into another radioisotope. The isotope produced by this radioactive emission then decays into another, often radioactive isotope. This chain of decays always terminates in a stable isotope, whose nucleus no longer has the surplus of energy necessary to produce another emission of radiation. Such stable isotopes are then said to have reached their ground states.

↓ Menu
HINT:

In this Dossier

Decay chain in the context of Lead

Lead (/lɛd/ ) is a chemical element with the symbol Pb (from the Latin plumbum) and atomic number 82. It is a heavy metal, denser than most common materials. Lead is soft, malleable, and has a relatively low melting point. When freshly cut, it appears shiny gray with a bluish tint, but tarnishes to dull gray on exposure to air. Lead has the highest atomic number of any stable element, and three of its isotopes are endpoints of major nuclear decay chains of heavier elements.

Lead is a relatively unreactive post-transition metal. Its weak metallic character is shown by its amphoteric behavior: lead and lead oxides react with both acids and bases, and it tends to form covalent bonds. Lead compounds usually occur in the +2 oxidation state rather than the +4 state common in lighter members of the carbon group, with exceptions mostly limited to organolead compounds. Like the lighter members of the group, lead can bond with itself, forming chains and polyhedral structures.

View the full Wikipedia page for Lead
↑ Return to Menu

Decay chain in the context of Radioisotope

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that is unstable and known to undergo radioactive decay into a different nuclide, which may be another radionuclide (see decay chain) or be stable. Radiation emitted by radionuclides is almost always ionizing radiation because it is energetic enough to liberate an electron from another atom.

Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide, the decay rate (considered as a statistical average), and thus the half-life (t1/2) for that nuclide, can be calculated from the measurement of the decay. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

View the full Wikipedia page for Radioisotope
↑ Return to Menu

Decay chain in the context of Radon

Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to be released from the soil and rock where it is generated. Radon isotopes are the immediate decay products of radium isotopes.

The instability of Rn, its most stable isotope, makes radon one of the rarest elements. Radon will be present on Earth for several billion more years despite its short half-life, because it is constantly being produced as a step in the decay chains of U and Th, both of which are abundant radioactive nuclides with half-lives of at least several billion years. The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead. Rn occurs in significant quantities as a step in the normal radioactive decay chain of U, also known as the uranium series, which slowly decays into a variety of radioactive nuclides and eventually decays into stable Pb. Rn occurs in minute quantities as an intermediate step in the decay chain of Th, also known as the thorium series, which eventually decays into stable Pb.

View the full Wikipedia page for Radon
↑ Return to Menu

Decay chain in the context of Gamma spectroscopy

Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics. Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement.

Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced.

View the full Wikipedia page for Gamma spectroscopy
↑ Return to Menu

Decay chain in the context of Daughter product

In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (decay chain). For example, U decays to Th which decays to Pa which decays, and so on, to Pb (which is stable):

View the full Wikipedia page for Daughter product
↑ Return to Menu

Decay chain in the context of Uranium-238

Uranium-238 (
U
or U-238) is the most common isotope of uranium found in nature, with a relative abundance above 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

The isotope has a half-life of 4.463 billion years (1.408×10 s). Due to its abundance and half-life relative rate of decay to other radioactive elements, U is responsible for about 40% of the radioactive heat produced within the Earth. The U decay chain contributes six electron anti-neutrinos per U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. The decay of U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

View the full Wikipedia page for Uranium-238
↑ Return to Menu

Decay chain in the context of Thorium

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

All known thorium isotopes are unstable. The most stable isotope, Th, has a half-life of 14.0 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable Pb. On Earth, thorium and uranium are the only elements with no stable or nearly-stable isotopes that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracting rare-earth elements.

View the full Wikipedia page for Thorium
↑ Return to Menu

Decay chain in the context of Polonium

Polonium is a chemical element; it has symbol Po and atomic number 84. A rare and highly radioactive metal (although sometimes classified as a metalloid) with no stable isotopes, polonium is a chalcogen and chemically similar to selenium and tellurium, though its metallic character resembles that of its horizontal neighbors in the periodic table: thallium, lead, and bismuth. Due to the short half-life of all its isotopes, its natural occurrence is limited to tiny traces of the fleeting polonium-210 (with a half-life of 138 days) in uranium ores, as it is the penultimate daughter of natural uranium-238. Though two longer-lived isotopes exist (polonium-209 with a half-life of 124 years and polonium-208 with a half-life of 2.898 years), they are much more difficult to produce. Today, polonium is usually produced in milligram quantities by the neutron irradiation of bismuth. Due to its intense radioactivity, which results in the radiolysis of chemical bonds and radioactive self-heating, its chemistry has mostly been investigated on the trace scale only.

Polonium was discovered on 18 July 1898 by Marie Skłodowska-Curie and Pierre Curie, when it was extracted from the uranium ore pitchblende and identified solely by its strong radioactivity: it was the first element to be discovered in this way. Polonium was named after Marie Skłodowska-Curie's homeland of Poland, which at the time was partitioned between three countries. Polonium has few applications, and those are related to its radioactivity: heaters in space probes, antistatic devices, sources of neutrons and alpha particles, and poison (e.g., poisoning of Alexander Litvinenko). It is extremely dangerous to humans.

View the full Wikipedia page for Polonium
↑ Return to Menu

Decay chain in the context of Astatine

Astatine is a chemical element; it has symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. Consequently, a solid sample of the element has never been seen, because any macroscopic specimen would be immediately vaporized by the heat of its radioactivity.

The bulk properties of astatine are not known with certainty. Many of them have been estimated from its position on the periodic table as a heavier analog of fluorine, chlorine, bromine, and iodine, the four stable halogens. However, astatine also falls roughly along the dividing line between metals and nonmetals, and some metallic behavior has also been observed and predicted for it. Astatine is likely to have a dark or lustrous appearance and may be a semiconductor or possibly a metal. Chemically, several anionic species of astatine are known and most of its compounds resemble those of iodine, but it also sometimes displays metallic characteristics and shows some similarities to silver.

View the full Wikipedia page for Astatine
↑ Return to Menu

Decay chain in the context of Francium

Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain in which it appears), has a half-life of only 22 minutes. It is the second-most electropositive element, behind only caesium, and is the second rarest naturally occurring element (after astatine). Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is [Rn] 7s; thus, the element is classed as an alkali metal.

As a consequence of its extreme instability, bulk francium has never been seen. Because of the general appearance of the other elements in its periodic table column, it is presumed that francium would appear as a highly reactive metal if enough could be collected together to be viewed as a bulk solid or liquid. Obtaining such a sample is highly improbable since the extreme heat of decay resulting from its short half-life would immediately vaporize any viewable quantity of the element.

View the full Wikipedia page for Francium
↑ Return to Menu

Decay chain in the context of Lead-206

Lead (82Pb) has four observationally stable isotopes: Pb, Pb, Pb, Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope Tl. The three series terminating in lead represent the decay chain products of long-lived primordial U, U, and Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. This is the basis for lead–lead dating and uranium–lead dating.

The longest-lived radioisotopes, both decaying by electron capture, are Pb with a half-life of 17.0 million years and Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, Pb with a half-life of 22.2 years, is useful for studying the sedimentation chronology of environmental samples on time scales shorter than 100 years.

View the full Wikipedia page for Lead-206
↑ Return to Menu