Organolead chemistry in the context of "Lead"

⭐ In the context of Lead, organolead chemistry is considered…

Ad spacer

⭐ Core Definition: Organolead chemistry

Organolead chemistry is the scientific study of the synthesis and properties of organolead compounds, which are organometallic compounds containing a chemical bond between carbon and lead. The first organolead compound was hexaethyldilead (Pb2(C2H5)6), first synthesized in 1858. Sharing the same group with carbon, lead is tetravalent.

Going down the carbon group the C–X (X = C, Si, Ge, Sn, Pb) bond becomes weaker and the bond length larger. The C–Pb bond in tetramethyllead is 222 pm long with a dissociation energy of 49 kcal/mol (204 kJ/mol). For comparison the C–Sn bond in tetramethyltin is 214 pm long with dissociation energy 71 kcal/mol (297 kJ/mol). The dominance of Pb(IV) in organolead chemistry is remarkable because inorganic lead compounds tend to have Pb(II) centers. The reason is that with inorganic lead compounds elements such as nitrogen, oxygen and the halides have a much higher electronegativity than lead itself and the partial positive charge on lead then leads to a stronger contraction of the 6s orbital than the 6p orbital making the 6s orbital inert; this is called the inert-pair effect.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Organolead chemistry in the context of Lead

Lead (/lɛd/ ) is a chemical element with the symbol Pb (from the Latin plumbum) and atomic number 82. It is a heavy metal, denser than most common materials. Lead is soft, malleable, and has a relatively low melting point. When freshly cut, it appears shiny gray with a bluish tint, but tarnishes to dull gray on exposure to air. Lead has the highest atomic number of any stable element, and three of its isotopes are endpoints of major nuclear decay chains of heavier elements.

Lead is a relatively unreactive post-transition metal. Its weak metallic character is shown by its amphoteric behavior: lead and lead oxides react with both acids and bases, and it tends to form covalent bonds. Lead compounds usually occur in the +2 oxidation state rather than the +4 state common in lighter members of the carbon group, with exceptions mostly limited to organolead compounds. Like the lighter members of the group, lead can bond with itself, forming chains and polyhedral structures.

↓ Explore More Topics
In this Dossier