Data mining in the context of Numerical linear algebra


Data mining in the context of Numerical linear algebra

Data mining Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Data mining in the context of "Numerical linear algebra"


⭐ Core Definition: Data mining

Data mining is the process of extracting and finding patterns in massive data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.

The term "data mining" is a misnomer because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support systems, including artificial intelligence (e.g., machine learning) and business intelligence. Often the more general terms (large scale) data analysis and analytics—or, when referring to actual methods, artificial intelligence and machine learning—are more appropriate.

↓ Menu
HINT:

👉 Data mining in the context of Numerical linear algebra

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social sciences are as vast as the applications of continuous mathematics. It is often a fundamental part of engineering and computational science problems, such as image and signal processing, telecommunication, computational finance, materials science simulations, structural biology, data mining, bioinformatics, and fluid dynamics. Matrix methods are particularly used in finite difference methods, finite element methods, and the modeling of differential equations. Noting the broad applications of numerical linear algebra, Lloyd N. Trefethen and David Bau, III argue that it is "as fundamental to the mathematical sciences as calculus and differential equations", even though it is a comparatively small field. Because many properties of matrices and vectors also apply to functions and operators, numerical linear algebra can also be viewed as a type of functional analysis which has a particular emphasis on practical algorithms.

↓ Explore More Topics
In this Dossier

Data mining in the context of Predictive analytics

Predictive analytics encompasses a variety of statistical techniques from data mining, predictive modeling, and machine learning that analyze current and historical facts to make predictions about future or otherwise unknown events.

In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, guiding decision-making for candidate transactions.

View the full Wikipedia page for Predictive analytics
↑ Return to Menu

Data mining in the context of Data analysis

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.

Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. In statistical applications, data analysis can be divided into descriptive statistics, exploratory data analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features in the data while CDA focuses on confirming or falsifying existing hypotheses. Predictive analytics focuses on the application of statistical models for predictive forecasting or classification, while text analytics applies statistical, linguistic, and structural techniques to extract and classify information from textual sources, a variety of unstructured data. All of the above are varieties of data analysis.

View the full Wikipedia page for Data analysis
↑ Return to Menu

Data mining in the context of Network science

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes (or vertices) and the connections between the elements or actors as links (or edges). The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."

View the full Wikipedia page for Network science
↑ Return to Menu

Data mining in the context of Functional silo

An information silo, or a group of such silos, is an insular management system in which one information system or subsystem is incapable of reciprocal operation with others that are, or should be, related. Thus information is not adequately shared but rather remains sequestered within each system or subsystem, figuratively trapped within a container as grain is trapped within a silo: there may be much of it, and it may be stacked quite high and be freely available within those limits, but it has no effect outside them.

Information silos occur whenever a data system is incompatible, or not integrated, with other data systems. This incompatibility may occur in the technical architecture, in the application architecture, or in the data architecture of a data system. Such data silos are proving an obstacle for businesses wishing to use data mining to make productive use of their data. However, since it has been shown that established data-modeling methods are the root cause of the data-integration problem, most data systems are at least incompatible in the data-architecture layer.

View the full Wikipedia page for Functional silo
↑ Return to Menu

Data mining in the context of Pattern recognition

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess PR capabilities but their primary function is to distinguish and create emergent patterns. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

Pattern recognition systems are commonly trained from labeled "training" data. When no labeled data are available, other algorithms can be used to discover previously unknown patterns. KDD and data mining have a larger focus on unsupervised methods and stronger connection to business use. Pattern recognition focuses more on the signal and also takes acquisition and signal processing into consideration. It originated in engineering, and the term is popular in the context of computer vision: a leading computer vision conference is named Conference on Computer Vision and Pattern Recognition.

View the full Wikipedia page for Pattern recognition
↑ Return to Menu

Data mining in the context of Web search engine

A search engine is a software system that provides hyperlinks to web pages, and other relevant information on the Web in response to a user's query. The user enters a query in a web browser or a mobile app, and the search results are typically presented as a list of hyperlinks accompanied by textual summaries and images. Users also have the option of limiting a search to specific types of results, such as images, videos, or news.

For a search provider, its engine is part of a distributed computing system that can encompass many data centers throughout the world. The speed and accuracy of an engine's response to a query are based on a complex system of indexing that is continuously updated by automated web crawlers. This can include data mining the files and databases stored on web servers, although some content is not accessible to crawlers.

View the full Wikipedia page for Web search engine
↑ Return to Menu

Data mining in the context of Data preprocessing

Data preprocessing can refer to manipulation, filtration or augmentation of data before it is analyzed, and is often an important step in the data mining process. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues.Preprocessing is the process by which unstructured data is transformed into intelligible representations suitable for machine-learning models. This phase of model deals with noise in order to arrive at better and improved results from the original data set which was noisy. This dataset also has some level of missing value present in it.

The preprocessing pipeline used can often have large effects on the conclusions drawn from the downstream analysis. Thus, representation and quality of data is necessary before running any analysis. Often, data preprocessing is the most important phase of a machine learning project, especially in computational biology. If there is a high proportion of irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase may be more difficult. Data preparation and filtering steps can take a considerable amount of processing time. Examples of methods used in data preprocessing include cleaning, instance selection, normalization, one-hot encoding, data transformation, feature extraction and feature selection.

View the full Wikipedia page for Data preprocessing
↑ Return to Menu

Data mining in the context of Business information

Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information to inform business strategies and business operations. Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.

BI tools can handle large amounts of structured and sometimes unstructured data to help organizations identify, develop, and otherwise create new strategic business opportunities. They aim to allow for the easy interpretation of these big data. Identifying new opportunities and implementing an effective strategy based on insights is assumed to potentially provide businesses with a competitive market advantage and long-term stability, and help them take strategic decisions.

View the full Wikipedia page for Business information
↑ Return to Menu

Data mining in the context of Text analytics

Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." Written resources may include websites, books, emails, reviews, and articles. High-quality information is typically obtained by devising patterns and trends by means such as statistical pattern learning. According to Hotho et al. (2005), there are three perspectives of text mining: information extraction, data mining, and knowledge discovery in databases (KDD). Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interest. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities).

Text analysis involves information retrieval, lexical analysis to study word frequency distributions, pattern recognition, tagging/annotation, information extraction, data mining techniques including link and association analysis, visualization, and predictive analytics. The overarching goal is, essentially, to turn text into data for analysis, via the application of natural language processing (NLP), different types of algorithms and analytical methods. An important phase of this process is the interpretation of the gathered information.

View the full Wikipedia page for Text analytics
↑ Return to Menu

Data mining in the context of WorldCat

WorldCat is a union catalog that itemizes the collections of tens of thousands of institutions (mostly libraries), in many countries, that are current or past members of the OCLC global cooperative. It is operated by OCLC, Inc. Many of the OCLC member libraries collectively maintain WorldCat's database, the world's largest bibliographic database. The database includes other information sources in addition to member library collections. OCLC makes WorldCat itself available free to libraries, but the catalog is the foundation for other subscription OCLC services (such as resource sharing and collection management). WorldCat is used by librarians for cataloging and research and by the general public.

As of December 2021, WorldCat contained over 540 million bibliographic records in 483 languages, representing over 3 billion physical and digital library assets, and the WorldCat persons dataset (mined from WorldCat) included over 100 million people.

View the full Wikipedia page for WorldCat
↑ Return to Menu

Data mining in the context of Information integration

Information integration (II) is the merging of information from heterogeneous sources with differing conceptual, contextual and typographical representations. It is used in data mining and consolidation of data from unstructured or semi-structured resources. Typically, information integration refers to textual representations of knowledge but is sometimes applied to rich-media content. Information fusion, which is a related term, involves the combination of information into a new set of information towards reducing redundancy and uncertainty.

Examples of technologies available to integrate information include deduplication, and string metrics which allow the detection of similar text in different data sources by fuzzy matching. A host of methods for these research areas are available such as those presented in the International Society of Information Fusion. Other methods rely on causal estimates of the outcomes based on a model of the sources.

View the full Wikipedia page for Information integration
↑ Return to Menu

Data mining in the context of Independent and identically distributed random variables

In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. IID was first defined in statistics and finds application in many fields, such as data mining and signal processing.

View the full Wikipedia page for Independent and identically distributed random variables
↑ Return to Menu

Data mining in the context of Cyberinfrastructure

United States federal government agencies use the term cyberinfrastructure to describe research environments that support advanced data acquisition, data storage, data management, data integration, data mining, data visualization and other computing and information processing services distributed over the Internet beyond the scope of a single institution. In scientific usage, cyberinfrastructure is a technological and sociological solution to the problem of efficiently connecting federal laboratories, large scales of data, processing power, and scientists with the goal of enabling novel scientific discoveries and advancements in human knowledge.

View the full Wikipedia page for Cyberinfrastructure
↑ Return to Menu

Data mining in the context of Data dredging

Data dredging, also known as data snooping or p-hacking, is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives. This is done by performing many statistical tests on the data and only reporting those that come back with significant results. Thus data dredging is also often a misused or misapplied form of data mining.

The process of data dredging involves testing multiple hypotheses using a single data set by exhaustively searching—perhaps for combinations of variables that might show a correlation, and perhaps for groups of cases or observations that show differences in their mean or in their breakdown by some other variable.

View the full Wikipedia page for Data dredging
↑ Return to Menu