Corrosion in the context of "Hydron"

Play Trivia Questions online!

or

Skip to study material about Corrosion in the context of "Hydron"

Ad spacer

⭐ Core Definition: Corrosion

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In the most common use of the word, this means electrochemical oxidation of a metal reacting with an oxidant such as oxygen (O2, gaseous or dissolved), or H3O ions (H, hydrated protons) present in aqueous solution. Rusting, the formation of red-orange iron oxides, is perhaps the most familiar example of electrochemical corrosion. This type of corrosion typically produces oxides or salts of the original metal and results in a distinctive coloration. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although, in this context, the term degradation is more common. Corrosion degrades the useful properties of materials and structures including mechanical strength, appearance, and permeability to liquids and gases. Corrosive is distinguished from caustic: the former implies mechanical degradation, the latter chemical.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Corrosion in the context of Coastal erosion

Coastal erosion is the loss or displacement of land, or the long-term removal of sediment and rocks along the coastline due to the action of waves, currents, tides, wind-driven water, waterborne ice, or other impacts of storms. The landward retreat of the shoreline can be measured and described over a temporal scale of tides, seasons, and other short-term cyclic processes. Coastal erosion may be caused by hydraulic action, abrasion, impact and corrosion by wind and water, and other forces, natural or unnatural.

On non-rocky coasts, coastal erosion results in rock formations in areas where the coastline contains rock layers or fracture zones with varying resistance to erosion. Softer areas become eroded much faster than harder ones, which typically result in landforms such as tunnels, bridges, columns, and pillars. Over time the coast generally evens out. The softer areas fill up with sediment eroded from hard areas, and rock formations are eroded away. Also erosion commonly happens in areas where there are strong winds, loose sand, and soft rocks. The blowing of millions of sharp sand grains creates a sandblasting effect. This effect helps to erode, smooth and polish rocks. The definition of erosion is grinding and wearing away of rock surfaces through the mechanical action of other rock or sand particles.

↑ Return to Menu

Corrosion in the context of Steel

Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to its high elastic modulus, yield strength, fracture strength and low raw material cost, steel is one of the most commonly manufactured materials in the world. Steel is used in structures (as concrete reinforcing rods or steel beams), in bridges, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

Iron is always the main element in steel, but other elements are used to produce various grades of steel, demonstrating altered material, mechanical, and microstructural properties. Stainless steels, for example, typically contain 18% chromium and exhibit improved corrosion and oxidation resistance versus their carbon steel counterpart. Galvanized steel is coated in a layer of zinc to achieve a similar effect. Under atmospheric pressures, steels generally take on two crystalline forms: body-centered cubic and face-centered cubic; however, depending on the thermal history and alloying, the microstructure may contain the distorted martensite phase or the carbon-rich cementite phase, which are tetragonal and orthorhombic, respectively. In the case of alloyed iron, the strengthening is primarily due to the introduction of carbon in the primarily-iron lattice, inhibiting deformation under mechanical stress. Alloying may also induce additional phases that affect the mechanical properties. In most cases, the engineered mechanical properties are at the expense of the ductility and elongation of the pure iron state, which decrease upon the addition of carbon.

↑ Return to Menu

Corrosion in the context of Lithium

Lithium (from Ancient Greek: λίθος, líthos, 'stone') is a chemical element; it has symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. It exhibits a metallic luster when pure, but quickly corrodes in air to a dull silvery gray, then black tarnish. It does not occur freely in nature, but occurs mainly as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the Solar System than 25 of the first 32 chemical elements even though its nuclei are very light: it is an exception to the trend that heavier nuclei are less common. For related reasons, lithium has important uses in nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully human-made nuclear reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.

↑ Return to Menu

Corrosion in the context of Motor oil

Motor oil, engine oil, or engine lubricant is any one of various substances used for the lubrication of internal combustion engines. They typically consist of base oils enhanced with various additives, particularly antiwear additives, detergents, dispersants, and, for multi-grade oils, viscosity index improvers. The main function of motor oil is to reduce friction and wear on moving parts and to clean the engine from sludge (one of the functions of dispersants) and varnish (detergents). It also neutralizes acids that originate from fuel and from oxidation of the lubricant (detergents), improves the sealing of piston rings, and cools the engine by carrying heat away from moving parts.

In addition to the aforementioned basic constituents, almost all lubricating oils contain corrosion and oxidation inhibitors. Motor oil may be composed of only a lubricant base stock in the case of non-detergent oil, or a lubricant base stock plus additives to improve the oil's detergency, extreme pressure performance, and ability to inhibit corrosion of engine parts.

↑ Return to Menu

Corrosion in the context of Reinforced concrete

Reinforced concrete, also called ferroconcrete or ferro-concrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel reinforcing bars (known as rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

↑ Return to Menu

Corrosion in the context of Cor-Ten

Weathering steel, often called corten steel (or its trademarked name, COR-TEN) is a group of steel alloys that form a stable external layer of rust that eliminates the need for painting.

U.S. Steel (USS) holds the registered trademark on the name COR-TEN. The name COR-TEN refers to the two distinguishing properties of this type of steel: corrosion resistance and tensile strength. Although USS sold its discrete plate business to International Steel Group (now ArcelorMittal) in 2003, it makes COR-TEN branded material in strip mill plate and sheet forms.

↑ Return to Menu

Corrosion in the context of Stainless steel

Stainless steel is an iron-based alloy that contains chromium, making it resistant to rust and corrosion. Alternatively, it is known as inox (an abbreviation of the French term inoxydable, meaning non-oxidizable), corrosion-resistant steel (CRES), Nirosta (an abbreviation of the German term nichtrostender Stahl) or rustless steel. Stainless steel's resistance to corrosion comes from its chromium content of 10.5% or more, which forms a passive film that protects the material and can self-heal when exposed to oxygen. It can be further alloyed with elements like molybdenum, carbon, nickel and nitrogen to enhance specific properties for various applications.

The alloy's properties, such as luster and resistance to corrosion, are useful in many applications. Stainless steel can be rolled into sheets, plates, bars, wire, and tubing. These can be used in cookware, cutlery, surgical instruments, major appliances, vehicles, construction material in large buildings, industrial equipment (e.g., in paper mills, chemical plants, water treatment), and storage tanks and tankers for chemicals and food products. Some grades are also suitable for forging and casting.

↑ Return to Menu

Corrosion in the context of Pitting corrosion

Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic (oxidation reaction) while an unknown but potentially vast area becomes cathodic (reduction reaction), leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.

Another term arises, pitting factor, which is defined as the ratio of the depth of the deepest pit (from localized corrosion) to the average penetration depth (mean thickness of the corrosion layer produced by the general uniform corrosion), which can be calculated based on the weight loss and corrosion products density.

↑ Return to Menu

Corrosion in the context of Precious metal

Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less chemically reactive than most elements. They are usually ductile and have a high lustre. Historically, precious metals were important as currency but they are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best known precious metals are the precious coinage metals, which are gold and silver. Although both have industrial uses, they are better known for their uses in art, jewelry, and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.The demand for precious metals is driven not only by their practical use but also by their role as investments and a store of value. Historically, precious metals have commanded much higher prices than common industrial metals.

↑ Return to Menu