Contrail in the context of "Stratosphere"

Play Trivia Questions online!

or

Skip to study material about Contrail in the context of "Stratosphere"

Ad spacer

⭐ Core Definition: Contrail

Contrails (/ˈkɒntrlz/; short for "condensation trails") or vapour trails are line-shaped clouds produced by aircraft engine exhaust or changes in air pressure, typically at aircraft cruising altitudes several kilometres/miles above the Earth's surface. They are composed primarily of water, in the form of ice crystals. The combination of water vapor in aircraft engine exhaust and the low ambient temperatures at high altitudes cause the trails' formation.

Impurities in the engine exhaust from the fuel, including soot and sulfur compounds (0.05% by weight in jet fuel) provide some of the particles that serve as cloud condensation nuclei for water droplet growth in the exhaust. If water droplets form, they can freeze to form ice particles that compose a contrail. Their formation can also be triggered by changes in air pressure in wingtip vortices, or in the air over the entire wing surface. Contrails, and other clouds caused directly by human activity, are called homogenitus.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Contrail in the context of Stratosphere

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

↓ Explore More Topics
In this Dossier

Contrail in the context of Evidence

Evidence for a proposition is what supports the proposition. It is usually understood as an indication that the proposition is true. The exact definition and role of evidence vary across different fields.

In epistemology, evidence is what justifies beliefs or what makes it rational to hold a certain doxastic attitude. For example, a perceptual experience of a tree may serve as evidence to justify the belief that there is a tree. In this role, evidence is usually understood as a private mental state. In phenomenology, evidence is limited to intuitive knowledge, often associated with the controversial assumption that it provides indubitable access to truth.

↑ Return to Menu

Contrail in the context of Stratospheric

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

↑ Return to Menu