Coenzyme in the context of "Pyruvate dehydrogenase"


Coenzyme in the context of "Pyruvate dehydrogenase"

Coenzyme Study page number 1 of 1

Answer the Coenzyme Trivia Question!

or

Skip to study material about Coenzyme in the context of "Pyruvate dehydrogenase"


⭐ Core Definition: Coenzyme

A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.

Cofactors can be classified into two types: inorganic ions and complex organic molecules called coenzymes. Coenzymes are mainly derived from vitamins and other organic essential nutrients in small amounts (some definitions limit the use of the term "cofactor" for inorganic substances; both types are included here).

↓ Menu
HINT:

👉 Coenzyme in the context of Pyruvate dehydrogenase

Pyruvate dehydrogenase is an enzyme that catalyzes the reaction of pyruvate and a lipoamide to give the acetylated dihydrolipoamide and carbon dioxide. The conversion requires the coenzyme thiamine pyrophosphate.

Pyruvate dehydrogenase is usually encountered as a component, referred to as E1, of the pyruvate dehydrogenase complex (PDC). PDC consists of other enzymes, referred to as E2 and E3. Collectively E1-E3 transform pyruvate, NAD, coenzyme A into acetyl-CoA, CO2, and NADH. The conversion is crucial because acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration. To distinguish between this enzyme and the PDC, it is systematically called pyruvate dehydrogenase (acetyl-transferring).

↓ Explore More Topics
In this Dossier