Allosteric regulation in the context of "Coenzyme A"

Play Trivia Questions online!

or

Skip to study material about Allosteric regulation in the context of "Coenzyme A"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Allosteric regulation in the context of Coenzyme A

Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate (vitamin B5), and adenosine triphosphate (ATP).

In its acetyl form, coenzyme A is a highly versatile molecule, serving metabolic functions in both the anabolic and catabolic pathways. Acetyl-CoA is utilised in the post-translational regulation and allosteric regulation of pyruvate dehydrogenase and carboxylase to maintain and support the partition of pyruvate synthesis and degradation.

↓ Explore More Topics
In this Dossier

Allosteric regulation in the context of Substrate presentation

In molecular biology, substrate presentation is a biological process that activates a protein. The protein is sequestered away from its substrate and then activated by release and exposure to its substrate. A substrate is typically the substance on which an enzyme acts but can also be a protein surface to which a ligand binds. In the case of an interaction with an enzyme, the protein or organic substrate typically changes chemical form. Substrate presentation differs from allosteric regulation in that the enzyme need not change its conformation to begin catalysis. Substrate presentation is best described for domain partitioning at nanoscopic distances (<100 nm).

↑ Return to Menu

Allosteric regulation in the context of Protein dynamics

In molecular biology, proteins are generally thought to adopt unique structures determined by their amino acid sequences. However, proteins are not strictly static objects, but rather populate ensembles of (sometimes similar) conformations. Transitions between these states occur on a variety of length scales (tenths of angstroms to nm) and time scales (ns to s),and have been linked to functionally relevant phenomena such as allosteric signaling and enzyme catalysis.

The study of protein dynamics is most directly concerned with the transitions between these states, but can also involve the nature and equilibrium populations of the states themselves.These two perspectives—kinetics and thermodynamics, respectively—can be conceptually synthesized in an "energy landscape" paradigm:highly populated states and the kinetics of transitions between them can be described by the depths of energy wells and the heights of energy barriers, respectively.

↑ Return to Menu

Allosteric regulation in the context of Receptor antagonist

A receptor antagonist is a type of receptor ligand or drug that blocks or dampens a biological response by binding to and blocking a receptor rather than activating it like an agonist. Antagonist drugs interfere in the natural operation of receptor proteins. They are sometimes called blockers; examples include alpha blockers, beta blockers, and calcium channel blockers. In pharmacology, antagonists have affinity but no efficacy for their cognate receptors, and binding will disrupt the interaction and inhibit the function of an agonist or inverse agonist at receptors. Antagonists mediate their effects by binding to the active site or to the allosteric site on a receptor, or they may interact at unique binding sites not normally involved in the biological regulation of the receptor's activity. Antagonist activity may be reversible or irreversible depending on the longevity of the antagonist–receptor complex, which, in turn, depends on the nature of antagonist–receptor binding. The majority of drug antagonists achieve their potency by competing with endogenous ligands or substrates at structurally defined binding sites on receptors.

↑ Return to Menu