Receptor antagonist in the context of "Allosteric regulation"

Play Trivia Questions online!

or

Skip to study material about Receptor antagonist in the context of "Allosteric regulation"

Ad spacer

⭐ Core Definition: Receptor antagonist

A receptor antagonist is a type of receptor ligand or drug that blocks or dampens a biological response by binding to and blocking a receptor rather than activating it like an agonist. Antagonist drugs interfere in the natural operation of receptor proteins. They are sometimes called blockers; examples include alpha blockers, beta blockers, and calcium channel blockers. In pharmacology, antagonists have affinity but no efficacy for their cognate receptors, and binding will disrupt the interaction and inhibit the function of an agonist or inverse agonist at receptors. Antagonists mediate their effects by binding to the active site or to the allosteric site on a receptor, or they may interact at unique binding sites not normally involved in the biological regulation of the receptor's activity. Antagonist activity may be reversible or irreversible depending on the longevity of the antagonist–receptor complex, which, in turn, depends on the nature of antagonist–receptor binding. The majority of drug antagonists achieve their potency by competing with endogenous ligands or substrates at structurally defined binding sites on receptors.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Receptor antagonist in the context of Mechanism of action

In pharmacology, the term mechanism of action (MOA) refers to the specific biochemical interaction through which a drug substance produces its pharmacological effect. A mechanism of action usually includes mention of the specific molecular targets to which the drug binds, such as an enzyme or receptor. Receptor sites have specific affinities for drugs based on the chemical structure of the drug, as well as the specific action that occurs there.

Drugs that do not bind to receptors produce their corresponding therapeutic effect by simply interacting with chemical or physical properties in the body. Common examples of drugs that work in this way are antacids and laxatives.

↑ Return to Menu

Receptor antagonist in the context of Excitotoxicity

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as NMDA receptors or AMPA receptors encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Different mechanisms might lead to increased extracellular glutamate concentrations, e.g. reduced uptake by glutamate transporters (EAATs), synaptic hyperactivity, or abnormal release from different neural cell types. Excess glutamate allows high levels of calcium ions (Ca) to enter the cell. Ca influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA, in subtoxic amounts, can block glutamate toxicity and induce neuronal survival. In addition to abnormally high neurotransmitter concentrations, also elevation of the extracellular potassium concentration, acidification and other mechanisms may contribute to excitotoxicity.

Excitotoxicity may be involved in cancers, spinal cord injury, stroke, traumatic brain injury, hearing loss (through noise overexposure or ototoxicity), and in neurodegenerative diseases of the central nervous system such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, alcoholism, alcohol withdrawal or hyperammonemia and especially over-rapid benzodiazepine withdrawal, and also Huntington's disease. Other common conditions that cause excessive glutamate concentrations around neurons are hypoglycemia. Blood sugars are the primary energy source for glutamate removal from inter-synaptic spaces at the NMDA and AMPA receptor site. Persons in excitotoxic shock must never fall into hypoglycemia. Patients should be given 5% glucose (dextrose) IV drip during excitotoxic shock to avoid a dangerous build up of glutamate. When 5% glucose (dextrose) IV drip is not available high levels of fructose are given orally. Treatment is administered during the acute stages of excitotoxic shock along with glutamate receptor antagonists. Dehydration should be avoided as this also contributes to the concentrations of glutamate in the inter-synaptic cleft and "status epilepticus can also be triggered by a build up of glutamate around inter-synaptic neurons."

↑ Return to Menu

Receptor antagonist in the context of Antiprogestogen

Antiprogestogens or antiprogestins, also known as progesterone antagonists or progesterone blockers, are a class of drugs which prevent progestogens like progesterone from mediating their biological effects in the body. These drugs competitively inhibit progestin at progesterone receptors, acting by blocking the progesterone receptor (PR) and/or inhibiting or suppressing progestogen production. Antiprogestogens are one of three types of sex hormone antagonists, alongside antiestrogens and antiandrogens.

↑ Return to Menu

Receptor antagonist in the context of Antiglucocorticoid

Antiglucocorticoid drugs are a class of medications that act to reduce the effects of glucocorticoids, primarily cortisol, in the body. They include direct glucocorticoid receptor antagonists such as mifepristone and synthesis inhibitors such as metyrapone, ketoconazole, and aminoglutethimide. They are used to treat Cushing's syndrome.

These drugs have also been investigated for their potential therapeutic benefits in various psychiatric disorders, particularly depression and psychosis. The rationale behind using antiglucocorticoids in psychiatry stems from the observed dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in many psychiatric conditions, which often manifests as elevated cortisol levels.

↑ Return to Menu

Receptor antagonist in the context of Caffeine

Caffeine is a central nervous system (CNS) stimulant of the methylxanthine class and is the most commonly consumed psychoactive substance globally. It is mainly used for its eugeroic (wakefulness promoting), ergogenic (physical performance-enhancing), or nootropic (cognitive-enhancing) properties; it is also used recreationally or in social settings. Caffeine acts by blocking the binding of adenosine at a number of adenosine receptor types, inhibiting the centrally depressant effects of adenosine and enhancing the release of acetylcholine. Caffeine has a three-dimensional structure similar to that of adenosine, which allows it to bind and block its receptors. Caffeine also increases cyclic AMP levels through nonselective inhibition of phosphodiesterase, increases calcium release from intracellular stores, and antagonizes GABA receptors, although these mechanisms typically occur at concentrations beyond usual human consumption.

Caffeine is a bitter, white crystalline purine, a methylxanthine alkaloid, and is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, fruits, nuts, or leaves of a number of plants native to Africa, East Asia, and South America and helps to protect them against herbivores and from competition by preventing the germination of nearby seeds, as well as encouraging consumption by select animals such as honey bees. The most common sources of caffeine for human consumption are the tea leaves of the Camellia sinensis plant and the coffee bean, the seed of the Coffea plant. Some people drink beverages containing caffeine to relieve or prevent drowsiness and to improve cognitive performance. To make these drinks, caffeine is extracted by steeping the plant product in water, a process called infusion. Caffeine-containing drinks, such as tea, coffee, and cola, are consumed globally in high volumes. In 2020, almost 10 million tonnes of coffee beans were consumed globally. Caffeine is the world's most widely consumed psychoactive drug. Unlike most other psychoactive substances, caffeine remains largely unregulated and legal in nearly all parts of the world. Caffeine is also an outlier as its use is seen as socially acceptable in most cultures and is encouraged in some.

↑ Return to Menu

Receptor antagonist in the context of Zolpidem

Zolpidem, sold under the brand name Ambien among others, is a medication primarily used for the short-term treatment of sleeping problems. Guidelines recommend that it be used only after cognitive behavioral therapy for insomnia and after behavioral changes, such as sleep hygiene, have been tried. It decreases the time to sleep onset by about fifteen minutes and at larger doses helps people stay asleep longer. It is taken by mouth and is available as conventional tablets, extended-release tablets, or sublingual tablets.

Common side effects include daytime sleepiness, headache, nausea, and diarrhea. More severe side effects include memory problems and hallucinations. While flumazenil, a GABAA receptor antagonist, can reverse zolpidem's effects, usually supportive care is all that is recommended in overdose.

↑ Return to Menu

Receptor antagonist in the context of Fertility medication

Fertility medications, also known as fertility drugs, are medications which enhance reproductive fertility. For women, fertility medication is used to stimulate follicle development of the ovary. There are very few fertility medication options available for men.

Agents that enhance ovarian activity can be classified as either gonadotropin releasing hormone, estrogen antagonists or gonadotropins.

↑ Return to Menu

Receptor antagonist in the context of Agonist

An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agonist, while an inverse agonist causes an action opposite to that of the agonist.

↑ Return to Menu

Receptor antagonist in the context of NMDA receptor antagonist

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

Several synthetic opioids function additionally as NMDAR-antagonists, such as pethidine, levorphanol, methadone, dextropropoxyphene, tramadol, and ketobemidone.

↑ Return to Menu