Chemical ecology in the context of "Semiochemical"

Play Trivia Questions online!

or

Skip to study material about Chemical ecology in the context of "Semiochemical"

Ad spacer

⭐ Core Definition: Chemical ecology

Chemical ecology is a vast and interdisciplinary field utilizing biochemistry, biology, ecology, and organic chemistry for explaining observed interactions of living things and their environment through chemical compounds (e.g. ecosystem resilience and biodiversity). Early examples of the field trace back to experiments with the same plant genus in different environments, interaction of plants and butterflies, and the behavioral effect of catnip. Chemical ecologists seek to identify the specific molecules (i.e. semiochemicals) that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The chemicals behind such roles are typically small, readily-diffusible organic molecules that act over various distances that are dependent on the environment (i.e. terrestrial or aquatic) but can also include larger molecules and small peptides.

In practice, chemical ecology relies on chromatographic techniques, such as thin-layer chromatography, high performance liquid chromatography, gas chromatography, mass spectrometry (MS), and absolute configuration utilizing nuclear magnetic resonance (NMR) to isolate and identify bioactive metabolites. To identify molecules with the sought-after activity, chemical ecologists often make use of bioassay-guided fractionation. Today, chemical ecologists also incorporate genetic and genomic techniques to understand the biosynthetic and signal transduction pathways underlying chemically mediated interactions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Chemical ecology in the context of Semiochemical

A semiochemical, from the Greek σημεῖον (semeion), meaning "signal", is a chemical substance or mixture released by an organism that affects the behaviors of other individuals. Semiochemical communication can be divided into two broad classes: communication between individuals of the same species (intraspecific) or communication between different species (interspecific).

It is usually used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents.

↓ Explore More Topics
In this Dossier

Chemical ecology in the context of Pheromone

A pheromone (from Ancient Greek φέρω (phérō) 'to bear' and hormone) is a chemical that is secreted or excreted by an organism, which triggers a social response in members of the same species. There are alarm pheromones, food trail pheromones, sex pheromones, and many others that affect behavior or physiology. Pheromones are used by many organisms, from basic unicellular prokaryotes to complex multicellular eukaryotes. Their use among insects has been particularly well documented. In addition, some vertebrates, plants and ciliates communicate by using pheromones. The ecological functions and evolution of pheromones are a major topic of research in the field of chemical ecology.

↑ Return to Menu

Chemical ecology in the context of Phytochemistry

Phytochemistry is the study of phytochemicals, which are chemicals derived from plants. Phytochemists strive to describe the structures of the large number of secondary metabolites found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds. Plants synthesize phytochemicals for many reasons, including to protect themselves against insect attacks and plant diseases. The compounds found in plants are of many kinds, but most can be grouped into four major biosynthetic classes: alkaloids, phenylpropanoids, polyketides, and terpenoids.

Phytochemistry can be considered a subfield of botany or chemistry. Activities can be led in botanical gardens or in the wild with the aid of ethnobotany. Phytochemical studies directed toward human (i.e. drug discovery) use may fall under the discipline of pharmacognosy, whereas phytochemical studies focused on the ecological functions and evolution of phytochemicals likely fall under the discipline of chemical ecology. Phytochemistry also has relevance to the field of plant physiology.

↑ Return to Menu