Characteristic impedance in the context of RG-6


Characteristic impedance in the context of RG-6

Characteristic impedance Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Characteristic impedance in the context of "RG-6"


⭐ Core Definition: Characteristic impedance

The characteristic impedance or surge impedance (usually written Z0) of a uniform transmission line is the ratio of the amplitudes of voltage and current of a wave travelling in one direction along the line in the absence of reflections in the other direction. Equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.

The characteristic impedance of a lossless transmission line is purely real, with no reactive component (see below). Energy supplied by a source at one end of such a line is transmitted through the line without being dissipated in the line itself. A transmission line of finite length (lossless or lossy) that is terminated at one end with an impedance equal to the characteristic impedance appears to the source like an infinitely long transmission line and produces no reflections.

↓ Menu
HINT:

👉 Characteristic impedance in the context of RG-6

RG-6/U is a common type of coaxial cable used in a wide variety of residential and commercial applications. An RG-6/U coaxial cable has a characteristic impedance of 75 ohms. The term, RG-6, is generic and is applied to a wide variety of cable designs, which differ from one another in shielding characteristics, center conductor composition, dielectric type and jacket type. RG was originally a unit indicator for bulk radio frequency (RF) cable in the U.S. military's Joint Electronics Type Designation System. The suffix /U means for general utility use. The number was assigned sequentially. The RG unit indicator is no longer part of the JETDS system (MIL-STD-196E) and cable sold today under the RG-6 label is unlikely to meet military specifications. In practice, the term RG-6 is generally used to refer to coaxial cables with an 18 AWG (1.024 mm) center conductor and 75 ohm characteristic impedance.

↓ Explore More Topics
In this Dossier

Characteristic impedance in the context of Planar transmission line

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength (one tenth is often used as a rule of thumb), these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled (in most cases, the cross-section is kept constant along the length) so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

The earliest type of planar transmission line was conceived during World War II by Robert M. Barrett. It is known as stripline, and is one of the four main types in modern use, along with microstrip, suspended stripline, and coplanar waveguide. All four of these types consist of a pair of conductors (although in three of them, one of these conductors is the ground plane). Consequently, they have a dominant mode of transmission (the mode is the field pattern of the electromagnetic wave) that is identical, or near-identical, to the mode found in a pair of wires. Other planar types of transmission line, such as slotline, finline, and imageline, transmit along a strip of dielectric, and substrate-integrated waveguide forms a dielectric waveguide within the substrate with rows of posts. These types cannot support the same mode as a pair of wires, and consequently they have different transmission properties. Many of these types have a narrower bandwidth and in general produce more signal distortion than pairs of conductors. Their advantages depend on the exact types being compared, but can include low loss and a better range of characteristic impedance.

View the full Wikipedia page for Planar transmission line
↑ Return to Menu

Characteristic impedance in the context of RG-59

RG-59/U is a specific type of coaxial cable, often used for low-power video and RF signal connections. The cable has a characteristic impedance of 75 ohms, and a capacitance of around 20pF/ft (60pF/m). The 75 ohm impedance matches a dipole antenna in free space. RG (for radio guide) was originally a unit indicator for bulk radio frequency (RF) cable in the U.S. military's Joint Electronics Type Designation System. The suffix /U means for general utility use. The number 59 was assigned sequentially. The RG unit indicator is no longer part of the JETDS system (MIL-STD-196E) and cable sold today under the RG-59 label does not necessarily meet military specifications.

RG-59 is often used at baseband video frequencies, such as composite video. It may also be used for broadcast frequencies, but its high-frequency losses are too high to allow its use over long distances; in these applications, RG-6 or RG-11 are used instead. In cases where the transmission distance is too long for these media, such options as UTP (unshielded twisted pair) or fiber optic can be used.

View the full Wikipedia page for RG-59
↑ Return to Menu

Characteristic impedance in the context of Monolithic microwave integrated circuit

Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as microwave mixing, power amplification, low-noise amplification, and high-frequency switching. Inputs and outputs on MMIC devices are frequently matched to a characteristic impedance of 50 ohms. This makes them easier to use, as cascading of MMICs does not then require an external matching network. Additionally, most microwave test equipment is designed to operate in a 50-ohm environment.

MMICs are dimensionally small (from around 1 mm to 10 mm) and can be mass-produced, which has allowed the proliferation of high-frequency devices such as cellular phones. MMICs were originally fabricated using gallium arsenide (GaAs), a III-V compound semiconductor. It has two fundamental advantages over silicon (Si), the traditional material for IC realisation: device (transistor) speed and a semi-insulating substrate. Both factors help with the design of high-frequency circuit functions. However, the speed of Si-based technologies has gradually increased as transistor feature sizes have reduced, and MMICs can now also be fabricated in Si technology. The primary advantage of Si technology is its lower fabrication cost compared with GaAs. Silicon wafer diameters are larger (typically 8" to 12" compared with 4" to 8" for GaAs) and the wafer costs are lower, contributing to a less expensive IC.

View the full Wikipedia page for Monolithic microwave integrated circuit
↑ Return to Menu

Characteristic impedance in the context of BNC connector

The BNC connector is a miniature quick-connect/disconnect radio-frequency connector for coaxial cable. It was introduced on military radio equipment in the 1940s, and has since become widely used in radio systems and as a common type of video connector. It has a twist-to-lock design, where two lugs on the female connector engage slots in the shell of the male one.

BNC is designed to maintain the characteristic impedance of the cable across the connection, and is made in 50-ohm and 75-ohm versions. It is normally used for radio-frequency signals up to about 2 gigahertz and 500 volts.

View the full Wikipedia page for BNC connector
↑ Return to Menu

Characteristic impedance in the context of Standing wave ratio

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

Voltage standing wave ratio (VSWR) (pronounced "vizwar") is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.

View the full Wikipedia page for Standing wave ratio
↑ Return to Menu

Characteristic impedance in the context of Balun

A balun /ˈbælʌn/ (from "balanced to unbalanced", originally, but now derived from "balancing unit") is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

View the full Wikipedia page for Balun
↑ Return to Menu