Composite video in the context of "RG-59"

Play Trivia Questions online!

or

Skip to study material about Composite video in the context of "RG-59"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Composite video in the context of RG-59

RG-59/U is a specific type of coaxial cable, often used for low-power video and RF signal connections. The cable has a characteristic impedance of 75 ohms, and a capacitance of around 20pF/ft (60pF/m). The 75 ohm impedance matches a dipole antenna in free space. RG (for radio guide) was originally a unit indicator for bulk radio frequency (RF) cable in the U.S. military's Joint Electronics Type Designation System. The suffix /U means for general utility use. The number 59 was assigned sequentially. The RG unit indicator is no longer part of the JETDS system (MIL-STD-196E) and cable sold today under the RG-59 label does not necessarily meet military specifications.

RG-59 is often used at baseband video frequencies, such as composite video. It may also be used for broadcast frequencies, but its high-frequency losses are too high to allow its use over long distances; in these applications, RG-6 or RG-11 are used instead. In cases where the transmission distance is too long for these media, such options as UTP (unshielded twisted pair) or fiber optic can be used.

↓ Explore More Topics
In this Dossier

Composite video in the context of HDMI

HDMI (High-Definition Multimedia Interface) is a brand of proprietary digital interface used to transmit high-quality video and audio signals between devices. It is commonly used to connect devices such as televisions, computer monitors, projectors, gaming consoles, and personal computers. HDMI supports uncompressed video and either compressed or uncompressed digital audio, allowing a single cable to carry both signals.

Introduced in 2003, HDMI largely replaced older analog video standards such as composite video, S-Video, and VGA in consumer electronics. It was developed based on the CEA-861 standard, which was also used with the earlier Digital Visual Interface (DVI). HDMI is electrically compatible with DVI video signals, and adapters allow interoperability between the two without signal conversion or loss of quality. Adapters and active converters are also available for connecting HDMI to other video interfaces, including the older analog formats, as well as digital formats such as DisplayPort.

↑ Return to Menu

Composite video in the context of PAL

Phase Alternating Line (PAL) is a colour encoding system for analogue television. It was one of three major analogue colour television standards, the others being NTSC and SECAM. In most countries it was broadcast at 625 lines, 50 fields (25 frames) per second, and associated with CCIR analogue broadcast television systems B, D, G, H, I and K. The articles on analogue broadcast television systems further describe frame rates, image resolution, and audio modulation.

PAL video is composite video because luminance (luma, monochrome image) and chrominance (chroma, colour applied to the monochrome image) are transmitted together as one signal. A latter evolution of the standard, PALplus, added support for widescreen broadcasts with no loss of vertical image resolution, while retaining compatibility with existing sets. Almost all of the countries using PAL are currently in the process of conversion, or have already converted transmission standards to DVB, ISDB or DTMB. The PAL designation continues to be used in some non-broadcast contexts, especially regarding console video games where it is referring to the markets other than North America and Japan.

↑ Return to Menu

Composite video in the context of SECAM

SECAM, also written SÉCAM (French pronunciation: [sekam],Système Électronique Couleur Avec Mémoire, French for electronic colour system with memory), is an analogue colour television system that was used in France, Russia, and some other countries or territories of Europe and Africa. It was one of three major analog colour television standards, the others being PAL and NTSC. Like PAL, a SECAM picture is also made up of 625 interlaced lines and is displayed at a rate of 25 frames per second (except SECAM-M). However, due to the way SECAM processes colour information, it is not compatible with the PAL video format standard. SECAM video is composite video; the luminance (luma, monochrome image) and chrominance (chroma, color applied to the monochrome image) are transmitted together as one signal.

All the countries using SECAM have either converted to Digital Video Broadcasting (DVB), the new pan-European standard for digital television, or are currently in the process of conversion. SECAM remained a major standard into the 2000s.

↑ Return to Menu

Composite video in the context of Chrominance

Chrominance (chroma or C for short) is the signal used in video systems to convey the color information of the picture (see YUV color model), separately from the accompanying luma signal (or Y' for short). Chrominance is usually represented as two color-difference components: U = B′ − Y′ (blue − luma) and V = R′ − Y′ (red − luma). Each of these different components may have scale factors and offsets applied to it, as specified by the applicable video standard.

In composite video signals, the U and V signals modulate a color subcarrier signal, and the result is referred to as the chrominance signal; the phase and amplitude of this modulated chrominance signal correspond approximately to the hue and saturation of the color. In digital-video and still-image color spaces such as Y′CbCr, the luma and chrominance components are digital sample values.

↑ Return to Menu

Composite video in the context of Apple I

The Apple Computer 1 (Apple-1), later known predominantly as the Apple I (written with a Roman numeral), is an 8-bit personal computer electrically designed by Steve Wozniak and released by the Apple Computer Company (now Apple Inc.) in 1976. The company was initially formed to sell the Apple I – its first product – and would later become the world's largest technology company. The idea of starting a company and selling the computer came from Wozniak's friend and Apple co-founder Steve Jobs.

The key differentiator of the Apple I was that it included video display terminal circuitry, allowing it to connect to a low-cost composite video monitor and keyboard instead of an expensive accompanying terminal such as the Teletype Model 33 commonly used by other early personal computers. The Apple I and the Sol-20 were some of the earliest home computers to have this capability.

↑ Return to Menu