Cell biology in the context of Meristems


Cell biology in the context of Meristems

Cell biology Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Cell biology in the context of "Meristems"


⭐ Core Definition: Cell biology

Cell biology, cellular biology, or cytology, is the branch of biology that studies the structure, function, and behavior of the cells. All organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of an organism. Cell biology encompasses both prokaryotic and eukaryotic cells, with subtopics including the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition.

The study of cells is performed using microscopy techniques, cell culture, and cell fractionation. These are used for research into how cells function, which ultimately gives insight into larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences and is essential for research in biomedical fields such as cancer, and other diseases. Research in cell biology is interconnected to other fields such as genetics, molecular genetics, molecular biology, medical microbiology, immunology, and cytochemistry.

↓ Menu
HINT:

In this Dossier

Cell biology in the context of Molecular genetics

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens

The field of study is based on the merging of several sub-fields in biology: classical Mendelian inheritance, cellular biology, molecular biology, biochemistry, and biotechnology. It integrates these disciplines to explore things like genetic inheritance, gene regulation and expression, and the molecular mechanism behind various life processes.

View the full Wikipedia page for Molecular genetics
↑ Return to Menu

Cell biology in the context of Neuroscience

Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia, and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. The techniques used by neuroscientists have expanded enormously, from molecular and cellular studies of individual neurons to imaging of sensory, motor, and cognitive tasks in the brain.

View the full Wikipedia page for Neuroscience
↑ Return to Menu

Cell biology in the context of List of life sciences

This list of life sciences comprises the branches of science that involve the scientific study of life — such as animals (including human beings), microorganisms, and plants. This is one of the two major branches of natural science, the other being physical science, which is concerned with non-living matter. Biology is the overall natural science that studies life, with the other life sciences as its sub-disciplines.

Some life sciences focus on a specific type of organism. For example, zoology is the study of animals, while botany is the study of plants. Other life sciences focus on aspects common to all or many life forms, such as anatomy and genetics. Some focus on the micro scale (e.g., molecular biology, biochemistry), while others focus on larger scales (e.g., cytology, immunology, ethology, pharmacy, ecology). Another major branch of life sciences involves understanding the mindneuroscience. Life-science discoveries are helpful in improving the quality and standard of life and have applications in health, agriculture, medicine, and the pharmaceutical and food science industries. For example, they have provided information on certain diseases, which has helped in the understanding of human health.

View the full Wikipedia page for List of life sciences
↑ Return to Menu

Cell biology in the context of Extracellular fluid

In cell biology, extracellular fluid (ECF) denotes all body fluid outside the cells of any multicellular organism. Total body water in healthy adults is about 50–60% (range 45 to 75%) of total body weight; women and the obese typically have a lower percentage than lean men. Extracellular fluid makes up about one-third of body fluid, the remaining two-thirds is intracellular fluid within cells. The main component of the extracellular fluid is the interstitial fluid that surrounds cells.

Extracellular fluid is the internal environment of all multicellular animals, and in those animals with a blood circulatory system, a proportion of this fluid is blood plasma. Plasma and interstitial fluid are the two components that make up at least 97% of the ECF. Lymph makes up a small percentage of the interstitial fluid. The remaining small portion of the ECF includes the transcellular fluid (about 2.5%). The ECF can also be seen as having two components – plasma and lymph as a delivery system, and interstitial fluid for water and solute exchange with the cells.

View the full Wikipedia page for Extracellular fluid
↑ Return to Menu

Cell biology in the context of Plant physiology

Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants.

Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed germination, dormancy and stomata function and transpiration. Plant physiology interacts with the fields of plant morphology (structure of plants), plant ecology (interactions with the environment), phytochemistry (biochemistry of plants), cell biology, genetics, biophysics and molecular biology.

View the full Wikipedia page for Plant physiology
↑ Return to Menu

Cell biology in the context of Plant domestication

Plant breeding started with sedentary agriculture, particularly the domestication of the first agricultural plants, a practice which is estimated to date back 9,000 to 11,000 years. Initially, early human farmers selected food plants with particular desirable characteristics and used these as a seed source for subsequent generations, resulting in an accumulation of characteristics over time. In time however, experiments began with deliberate hybridization, the science and understanding of which was greatly enhanced by the work of Gregor Mendel. Mendel's work ultimately led to the new science of genetics. Modern plant breeding is applied genetics, but its scientific basis is broader, covering molecular biology, cytology, systematics, physiology, pathology, entomology, chemistry, and statistics (biometrics). It has also developed its own technology. Plant breeding efforts are divided into a number of different historical landmarks.

View the full Wikipedia page for Plant domestication
↑ Return to Menu

Cell biology in the context of Cytopathology

Cytopathology (from Greek κύτος, kytos, "a hollow"; πάθος, pathos, "fate, harm"; and -λογία, -logia) is a branch of pathology that studies and diagnoses diseases on the cellular level. The discipline was founded by George Nicolas Papanicolaou in 1928. Cytopathology is generally used on samples of free cells or tissue fragments, in contrast to histopathology, which studies whole tissues. Cytopathology is frequently, less precisely, called "cytology", which means "the study of cells".

Cytopathology is commonly used to investigate diseases involving a wide range of body sites, often to aid in the diagnosis of cancer but also in the diagnosis of some infectious diseases and other inflammatory conditions. For example, a common application of cytopathology is the Pap smear, a screening tool used to detect precancerous cervical lesions that may lead to cervical cancer.

View the full Wikipedia page for Cytopathology
↑ Return to Menu

Cell biology in the context of Cell fractionation

In cell biology, cell fractionation is the process used to separate cellular components while preserving individual functions of each component. This is a method that was originally used to demonstrate the cellular location of various biochemical processes. Other uses of subcellular fractionation is to provide an enriched source of a protein for further purification, and facilitate the diagnosis of various disease states.

View the full Wikipedia page for Cell fractionation
↑ Return to Menu

Cell biology in the context of Meristem

In cell biology, the meristem is a structure composed of specialized tissue found in plants, consisting of stem cells, known as meristematic cells, which are undifferentiated cells capable of continuous cellular division. These meristematic cells play a fundamental role in plant growth, regeneration, and acclimatization, as they serve as the source of all differentiated plant tissues and organs. They contribute to the formation of structures such as fruits, leaves, and seeds, as well as supportive tissues like stems and roots.

Meristematic cells are totipotent, meaning they have the ability to differentiate into any plant cell type. As they divide, they generate new cells, some of which remain meristematic cells while others differentiate into specialized cells that typically lose the ability to divide or produce new cell types. Due to their active division and undifferentiated nature, meristematic cells form the foundation for the formation of new plant organs and the continuous expansion of the plant body throughout the plant's life cycle.

View the full Wikipedia page for Meristem
↑ Return to Menu

Cell biology in the context of Abscission

Abscission (from Latin ab- 'away' and scindere 'to cut') is the shedding of various parts of an organism, such as a plant dropping a leaf, fruit, flower, or seed. In zoology, abscission is the intentional shedding of a body part, such as the shedding of a claw, husk, or the autotomy of a tail to evade a predator. In mycology, it is the liberation of a fungal spore. In cell biology, abscission refers to the separation of two daughter cells at the completion of cytokinesis.

View the full Wikipedia page for Abscission
↑ Return to Menu

Cell biology in the context of Vesicle (biology)

In cell biology, a vesicle is an organelle within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes (not to be confused with lysosomes). If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.

Vesicles perform a variety of functions. Because it is separated from the cytosol, the inside of the vesicle can be made to be different from the cytosolic environment. For this reason, vesicles are a basic tool used by the cell for organizing cellular substances. Vesicles are involved in metabolism, transport, buoyancy control, and temporary storage of food and enzymes. They can also act as chemical reaction chambers.

View the full Wikipedia page for Vesicle (biology)
↑ Return to Menu

Cell biology in the context of Model organism

A model organism is a non-human species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in the model organism will provide insight into the workings of other organisms. Model organisms are widely used to research human disease when human experimentation would be unfeasible or unethical. This strategy is made possible by the common descent of all living organisms, and the conservation of metabolic and developmental pathways and genetic material over the course of evolution.

Research using animal models has been central to most of the achievements of modern medicine. It has contributed most of the basic knowledge in fields such as human physiology and biochemistry, and has played significant roles in fields such as neuroscience and infectious disease. The results have included the near-eradication of polio and the development of organ transplantation, and have benefited both humans and animals. From 1910 to 1927, Thomas Hunt Morgan's work with the fruit fly Drosophila melanogaster identified chromosomes as the vector of inheritance for genes, and Eric Kandel wrote that Morgan's discoveries "helped transform biology into an experimental science". Research in model organisms led to further medical advances, such as the production of the diphtheria antitoxin and the 1922 discovery of insulin and its use in treating diabetes, which had previously meant death. Modern general anaesthetics such as halothane were also developed through studies on model organisms, and are necessary for modern, complex surgical operations. Other 20th-century medical advances and treatments that relied on research performed in animals include organ transplant techniques, the heart-lung machine, antibiotics, and the whooping cough vaccine.

View the full Wikipedia page for Model organism
↑ Return to Menu