Model in the context of "Model organism"

Play Trivia Questions online!

or

Skip to study material about Model in the context of "Model organism"

Ad spacer

⭐ Core Definition: Model

A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin modulus, 'a measure'.

Models can be divided into physical models (e.g. a ship model or a fashion model) and abstract models (e.g. a set of mathematical equations describing the workings of the atmosphere for the purpose of weather forecasting). Abstract or conceptual models are central to philosophy of science.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Model in the context of Mathematical modeling

A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modeling. Mathematical models are used in many fields, including applied mathematics, natural sciences, social sciences and engineering. In particular, the field of operations research studies the use of mathematical modelling and related tools to solve problems in business or military operations. A model may help to characterize a system by studying the effects of different components, which may be used to make predictions about behavior or solve specific problems.

↑ Return to Menu

Model in the context of Models of communication

Models of communication simplify or represent the process of communication. Most communication models try to describe both verbal and non-verbal communication and often understand it as an exchange of messages. Their function is to give a compact overview of the complex process of communication. This helps researchers formulate hypotheses, apply communication-related concepts to real-world cases, and test predictions. Despite their usefulness, many models are criticized based on the claim that they are too simple because they leave out essential aspects. The components and their interactions are usually presented in the form of a diagram. Some basic components and interactions reappear in many of the models. They include the idea that a sender encodes information in the form of a message and sends it to a receiver through a channel. The receiver needs to decode the message to understand the initial idea and provides some form of feedback. In both cases, noise may interfere and distort the message.

Models of communication are classified depending on their intended applications and on how they conceptualize the process. General models apply to all forms of communication while specialized models restrict themselves to specific forms, like mass communication. Linear transmission models understand communication as a one-way process in which a sender transmits an idea to a receiver. Interaction models include a feedback loop through which the receiver responds after getting the message. Transaction models see sending and responding as simultaneous activities. They hold that meaning is created in this process and does not exist prior to it. Constitutive and constructionist models stress that communication is a basic phenomenon responsible for how people understand and experience reality. Interpersonal models describe communicative exchanges with other people. They contrast with intrapersonal models, which discuss communication with oneself. Models of non-human communication describe communication among other species. Further types include encoding-decoding models, hypodermic models, and relational models.

↑ Return to Menu

Model in the context of Conceptual model

The term conceptual model refers to any model that is the direct output of a conceptualization or generalization process. Conceptual models are often abstractions of things in the real world, whether physical or social. Semantic studies are relevant to various stages of concept formation. Semantics is fundamentally a study of concepts, the meaning that thinking beings give to various elements of their experience.

↑ Return to Menu

Model in the context of Astrolabe

An astrolabe (Ancient Greek: ἀστρολάβος, romanizedastrolábos, lit.'star-taker'; Arabic: ٱلأَسْطُرلاب, romanizedal-Asṭurlāb; Persian: ستاره‌یاب, romanizedSetāreyāb) is an astronomical instrument dating to ancient times. It serves as a star chart and physical model of the visible half-dome of the sky. Its various functions also make it an elaborate inclinometer and an analog calculation device capable of working out several kinds of problems in astronomy. In its simplest form it is a metal disc with a pattern of wires, cutouts, and perforations that allows a user to calculate astronomical positions precisely. It is able to measure the altitude above the horizon of a celestial body, day or night; it can be used to identify stars or planets, to determine local latitude given local time (and vice versa), to survey, or to triangulate. It was used in classical antiquity, the Byzantine Empire, the Islamic Golden Age, the European Middle Ages and the Age of Discovery for all these purposes.

The astrolabe, which is a precursor to the sextant,is effective for determining latitude on land or calm seas. Although it is less reliable on the heaving deck of a ship in rough seas, the mariner's astrolabe was developed to solve that problem.

↑ Return to Menu

Model in the context of Business model

A business model describes how a business organization creates, delivers, and captures value, in economic, social, cultural or other contexts. The model describes the specific way in which the business conducts itself, spends, and earns money in a way that generates profit. The process of business model construction and modification is also called business model innovation and forms a part of business strategy.

In theory and practice, the term business model is used for a broad range of informal and formal descriptions to represent core aspects of an organization or business, including purpose, business process, target customers, offerings, strategies, infrastructure, organizational structures, profit structures, sourcing, trading practices, and operational processes and policies including culture.

↑ Return to Menu

Model in the context of Simulation

A simulation is an imitative representation of a process or system that could exist in the real world. In this broad sense, simulation can often be used interchangeably with model. Sometimes a clear distinction between the two terms is made, in which simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Another way to distinguish between the terms is to define simulation as experimentation with the help of a model. This definition includes time-independent simulations. Often, computers are used to execute the simulation.

Simulation is used in many contexts, such as simulation of technology for performance tuning or optimizing, safety engineering, testing, training, education, and video games. Simulation is also used with scientific modelling of natural systems or human systems to gain insight into their functioning, as in economics. Simulation can be used to show the eventual real effects of alternative conditions and courses of action. Simulation is also used when the real system cannot be engaged, because it may not be accessible, or it may be dangerous or unacceptable to engage, or it is being designed but not yet built, or it may simply not exist.

↑ Return to Menu

Model in the context of Scientific modelling

Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features. Different types of models may be used for different purposes, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, computational models to simulate, and graphical models to visualize the subject.

Modelling is an essential and inseparable part of many scientific disciplines, each of which has its own ideas about specific types of modelling. The following was said by John von Neumann.

↑ Return to Menu

Model in the context of Domain (biology)

In biological taxonomy, a domain (/dəˈmn/ or /dˈmn/) (Latin: regio or dominium), also dominion, superkingdom, realm, or empire, is the highest taxonomic rank of all organisms taken together. It was introduced in the three-domain system of taxonomy devised by Carl Woese, Otto Kandler and Mark Wheelis in 1990.

According to the domain system, the tree of life consists of either three domains, Archaea, Bacteria, and Eukarya, or two domains, Archaea and Bacteria, with Eukarya included in Archaea. In the three-domain model, the first two are prokaryotes, single-celled microorganisms without a membrane-bound nucleus. All organisms that have a cell nucleus and other membrane-bound organelles are included in Eukarya and called eukaryotes.

↑ Return to Menu