CRISPR gene editing (/ˈkrɪspər/; pronounced like "crisper"; an abbreviation for "clustered regularly interspaced short palindromic repeats") is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed or new ones added in vivo.
The technique is considered highly significant in biotechnology and medicine as it enables in vivo genome editing and is considered exceptionally precise, cost-effective, and efficient. It can be used in the creation of new medicines, agricultural products, and genetically modified organisms, or as a means of controlling pathogens and pests. It also offers potential in the treatment of inherited genetic diseases as well as diseases arising from somatic mutations, such as cancer. However, its use in human germline genetic modification is highly controversial. The development of this technique earned Jennifer Doudna and Emmanuelle Charpentier the Nobel Prize in Chemistry in 2020. The third researcher group that shared the Kavli Prize for the same discovery, led by Virginijus Šikšnys, was not awarded the Nobel Prize.