Capacitance in the context of Hygrometer


Capacitance in the context of Hygrometer

Capacitance Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Capacitance in the context of "Hygrometer"


⭐ Core Definition: Capacitance

Capacitance is the ability of an object to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance. An object that can be electrically charged exhibits self capacitance, for which the electric potential is measured between the object and ground. Mutual capacitance is measured between two components, and is particularly important in the operation of the capacitor, an elementary linear electronic component designed to add capacitance to an electric circuit.

The capacitance between two conductors depends only on the geometry; the opposing surface area of the conductors and the distance between them; and the permittivity of any dielectric material between them. For many dielectric materials, the permittivity, and thus the capacitance, is independent of the potential difference between the conductors and the total charge on them.

↓ Menu
HINT:

👉 Capacitance in the context of Hygrometer

A hygrometer is an instrument that measures humidity: that is, how much water vapor is present. Humidity measurement instruments usually rely on measurements of some other quantities, such as temperature, pressure, mass, and mechanical or electrical changes in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can be used to indicate the humidity. Modern electronic devices use the temperature of condensation (called the dew point), or they sense changes in electrical capacitance or resistance.

The maximum amount of water vapor that can be present in a given volume (at saturation) varies greatly with temperature; at low temperatures a lower mass of water per unit volume can remain as vapor than at high temperatures. Thus a change in the temperature changes the relative humidity.

↓ Explore More Topics
In this Dossier

Capacitance in the context of Capacitor

In electronics, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. A capacitor was originally known as a condenser, a term still encountered in a few compound names, such as the condenser microphone. Colloquially, a capacitor may be called a cap.

The utility of a capacitor depends on its capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed specifically to add capacitance to some part of the circuit.

View the full Wikipedia page for Capacitor
↑ Return to Menu

Capacitance in the context of Michael Faraday

Michael Faraday (UK: /ˈfærəˌd/ FAR-uh-day, US: /ˈfærədi/ FAR-uh-dee; 22 September 1791 – 25 August 1867) was an English chemist and physicist who contributed to the study of electrochemistry and electromagnetism. His main discoveries include the principles underlying electromagnetic induction, diamagnetism, and electrolysis. Although Faraday received little formal education, as a self-made man, he was one of the most influential scientists in history. It was by his research on the magnetic field around a conductor carrying a direct current that Faraday established the concept of the electromagnetic field in physics. Faraday also established that magnetism could affect rays of light and that there was an underlying relationship between the two phenomena. He similarly discovered the principles of electromagnetic induction, diamagnetism, and the laws of electrolysis. His inventions of electromagnetic rotary devices formed the foundation of electric motor technology, and it was largely due to his efforts that electricity became practical for use in technology. The SI unit of capacitance, the farad, is named after him.

As a chemist, Faraday discovered benzene and carbon tetrachloride, investigated the clathrate hydrate of chlorine, invented an early form of the Bunsen burner and the system of oxidation numbers, and popularised terminology such as "anode", "cathode", "electrode" and "ion". Faraday ultimately became the first and foremost Fullerian Professor of Chemistry at the Royal Institution, a lifetime position.

View the full Wikipedia page for Michael Faraday
↑ Return to Menu

Capacitance in the context of Electrical network

An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often referred to as open circuits).

A resistive network is a network containing only resistors and ideal current and voltage sources. Analysis of resistive networks is less complicated than analysis of networks containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC network. The effective resistance and current distribution properties of arbitrary resistor networks can be modeled in terms of their graph measures and geometrical properties.

View the full Wikipedia page for Electrical network
↑ Return to Menu

Capacitance in the context of Capacitance probe

Capacitance sensors (or Dielectric sensors) use capacitance to measure the dielectric permittivity of a surrounding medium. The configuration is like the neutron probe where an access tube made of PVC is installed in the soil; probes can also be modular (comb-like) and connected to a logger. The sensing head consists of an oscillator circuit, the frequency is determined by an annular electrode, fringe-effect capacitor, and the dielectric constant of the soil. Each capacitor sensor consists of two metal rings mounted on the circuit board at some distance from the top of the access tube. These rings are a pair of electrodes, which form the plates of the capacitor with the soil acting as the dielectric in between. The plates are connected to an oscillator, consisting of an inductor and a capacitor. The oscillating electrical field is generated between the two rings and extends into the soil medium through the wall of the access tube. The capacitor and the oscillator form a circuit, and changes in dielectric constant of surrounding media are detected by changes in the operating frequency. The capacitance sensors are designed to oscillate in excess of 100 MHz inside the access tube in free air. The output of the sensor is the frequency response of the soil’s capacitance due to its soil moisture level.

View the full Wikipedia page for Capacitance probe
↑ Return to Menu

Capacitance in the context of Distributed-element filter

A distributed-element filter is an electronic filter in which capacitance, inductance, and resistance (the elements of the circuit) are not localised in discrete capacitors, inductors, and resistors as they are in conventional filters. Its purpose is to allow a range of signal frequencies to pass, but to block others. Conventional filters are constructed from inductors and capacitors, and the circuits so built are described by the lumped element model, which considers each element to be "lumped together" at one place. That model is conceptually simple, but it becomes increasingly unreliable as the frequency of the signal increases, or equivalently as the wavelength decreases. The distributed-element model applies at all frequencies, and is used in transmission-line theory; many distributed-element components are made of short lengths of transmission line. In the distributed view of circuits, the elements are distributed along the length of conductors and are inextricably mixed together. The filter design is usually concerned only with inductance and capacitance, but because of this mixing of elements they cannot be treated as separate "lumped" capacitors and inductors. There is no precise frequency above which distributed element filters must be used but they are especially associated with the microwave band (wavelength less than one metre).

Distributed-element filters are used in many of the same applications as lumped element filters, such as selectivity of radio channel, bandlimiting of noise and multiplexing of many signals into one channel. Distributed-element filters may be constructed to have any of the bandforms possible with lumped elements (low-pass, band-pass, etc.) with the exception of high-pass, which is usually only approximated. All filter classes used in lumped element designs (Butterworth, Chebyshev, etc.) can be implemented using a distributed-element approach.

View the full Wikipedia page for Distributed-element filter
↑ Return to Menu

Capacitance in the context of Electrical element

In electrical engineering, electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. All electrical networks can be analyzed as multiple electrical elements interconnected by wires. Where the elements roughly correspond to real components, the representation can be in the form of a schematic diagram or circuit diagram. This is called a lumped-element circuit model. In other cases, infinitesimal elements are used to model the network in a distributed-element model.

These ideal electrical elements represent actual, physical electrical or electronic components. Still, they do not exist physically and are assumed to have ideal properties. In contrast, actual electrical components have less than ideal properties, a degree of uncertainty in their values, and some degree of nonlinearity. To model the nonideal behavior of a real circuit component may require a combination of multiple ideal electrical elements to approximate its function. For example, an inductor circuit element is assumed to have inductance but no resistance or capacitance, while a real inductor, a coil of wire, has some resistance in addition to its inductance. This may be modeled by an ideal inductance element in series with a resistance.

View the full Wikipedia page for Electrical element
↑ Return to Menu

Capacitance in the context of Supercapacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than solid-state capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit mass or energy per unit volume than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

Unlike ordinary capacitors, supercapacitors do not use a conventional solid dielectric, but rather, they use electrostatic double-layer capacitance and electrochemical pseudocapacitance, both of which contribute to the total energy storage of the capacitor.

View the full Wikipedia page for Supercapacitor
↑ Return to Menu

Capacitance in the context of Multimeter

A multimeter (also known as a multi-tester, volt-ohm-milliammeter, volt-ohmmeter or VOM, avometer or ampere-volt-ohmmeter) is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ohmmeter, and ammeter. Some feature the measurement of additional properties such as temperature and capacitance.

Analog multimeters use a microammeter with a moving pointer to display readings. Digital multimeters (DMMs) have numeric displays and are more precise than analog multimeters as a result. Meters will typically include probes that temporarily connect the instrument to the device or circuit under test, and offer some intrinsic safety features to protect the operator if the instrument is connected to high voltages that exceed its measurement capabilities.

View the full Wikipedia page for Multimeter
↑ Return to Menu

Capacitance in the context of Electric induction

In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in the physics of phenomena such as the capacitance of a material, the response of dielectrics to an electric field, how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

In any material, if there is an inversion center then the charge at, for instance, and are the same. This means that there is no dipole. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and the positive charges in the other direction. This leads to an induced dipole which is described as a polarization. There can be slightly different movements of the negative electrons and positive nuclei in molecules, or different displacements of the atoms in an ionic compound. Materials which do not have an inversion center display piezoelectricity and always have a polarization; in others spatially varying strains can break the inversion symmetry and lead to polarization, the flexoelectric effect. Other stimuli such as magnetic fields can lead to polarization in some materials, this being called the magnetoelectric effect.

View the full Wikipedia page for Electric induction
↑ Return to Menu

Capacitance in the context of Galvanic isolation

Galvanic isolation is a principle of isolating functional sections of electrical systems to prevent current flow; no direct conduction path is permitted.

Energy or information can still be exchanged between the sections by other means, such as capacitive, inductive, radiative, optical, acoustic, or mechanical coupling.

View the full Wikipedia page for Galvanic isolation
↑ Return to Menu

Capacitance in the context of Amperometry

Amperometry in chemistry is the detection of ions in a solution based on electric current or changes in electric current.

Amperometry is used in electrophysiology to study vesicle release events using a carbon fiber electrode. Unlike patch clamp techniques, the electrode used for amperometry is not inserted into or attached to the cell but brought nearby of the cell. The measurements from the electrode originate from an oxidizing reaction of a vesicle cargo released into the medium. Another technique used to measure vesicle release is capacitive measurements.

View the full Wikipedia page for Amperometry
↑ Return to Menu

Capacitance in the context of Farad

The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI), equivalent to 1 coulomb per volt (C/V). It is named after the English physicist Michael Faraday (1791–1867). In SI base units 1 F = 1 kgmsA.

View the full Wikipedia page for Farad
↑ Return to Menu

Capacitance in the context of Permittivity

In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

In the simplest case, the electric displacement field D resulting from an applied electric field E is

View the full Wikipedia page for Permittivity
↑ Return to Menu

Capacitance in the context of Impedance matching

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

Techniques of impedance matching include transformers, adjustable networks of lumped resistance, capacitance and inductance, or properly proportioned transmission lines. Practical impedance-matching devices will generally provide best results over a specified frequency band.

View the full Wikipedia page for Impedance matching
↑ Return to Menu