Electric induction in the context of Capacitance


Electric induction in the context of Capacitance

Electric induction Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electric induction in the context of "Capacitance"


⭐ Core Definition: Electric induction

In physics, the electric displacement field (denoted by D), also called electric flux density, is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in the physics of phenomena such as the capacitance of a material, the response of dielectrics to an electric field, how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.

In any material, if there is an inversion center then the charge at, for instance, and are the same. This means that there is no dipole. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and the positive charges in the other direction. This leads to an induced dipole which is described as a polarization. There can be slightly different movements of the negative electrons and positive nuclei in molecules, or different displacements of the atoms in an ionic compound. Materials which do not have an inversion center display piezoelectricity and always have a polarization; in others spatially varying strains can break the inversion symmetry and lead to polarization, the flexoelectric effect. Other stimuli such as magnetic fields can lead to polarization in some materials, this being called the magnetoelectric effect.

↓ Menu
HINT:

In this Dossier

Electric induction in the context of Electrification

Electrification is the process of powering by electricity and, in many contexts, the introduction of such power by changing over from an earlier power source. In the context of history of technology and economic development, electrification refers to the build-out of the electricity generation and electric power distribution systems. In the context of sustainable energy, electrification refers to the build-out of super grids and smart grids with distributed energy resources (such as energy storage) to accommodate the energy transition to renewable energy and the switch of end-uses to electricity.

The electrification of particular sectors of the economy, particularly out of context, is called by modified terms such as factory electrification, household electrification, rural electrification and railway electrification. In the context of sustainable energy, terms such as transport electrification (referring to electric vehicles) or heating electrification (referring to heat pumps powered with solar photovoltaics) are used. It may also apply to changing industrial processes such as smelting, melting, separating or refining from coal or coke heating, or from chemical processes to some type of electric process such as electric arc furnace, electric induction or resistance heating, or electrolysis or electrolytic separating.

View the full Wikipedia page for Electrification
↑ Return to Menu